Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1775: 185-208, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29876819

RESUMO

No genome sequencing project is complete without structural and functional annotation. Gene models and functional predictions for these models can be obtained relatively easily using computational methods, but they are prone to errors. We describe herein the steps we use to manually curate gene models and functionally annotate them. Our approach is to examine each gene model carefully, and improve its structure if necessary, using a comprehensive set of experimental and computational data as evidence. Then, functional predictions are assigned to the gene models based on conserved protein domains and sequence similarities. We use stringent sequence similarity cutoffs and reviewed sequence-database records as external sources for our annotations. By methodically choosing which evidence to use for each annotation, we minimize the risk of adopting and assigning false predictions to the gene models.


Assuntos
Biologia Computacional/métodos , Genoma/genética , Anotação de Sequência Molecular/métodos , Análise de Sequência de DNA/métodos , Mapeamento Cromossômico , Bases de Dados Genéticas
2.
Nat Genet ; 50(12): 1688-1695, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30349117

RESUMO

Aspergillus section Nigri comprises filamentous fungi relevant to biomedicine, bioenergy, health, and biotechnology. To learn more about what genetically sets these species apart, as well as about potential applications in biotechnology and biomedicine, we sequenced 23 genomes de novo, forming a full genome compendium for the section (26 species), as well as 6 Aspergillus niger isolates. This allowed us to quantify both inter- and intraspecies genomic variation. We further predicted 17,903 carbohydrate-active enzymes and 2,717 secondary metabolite gene clusters, which we condensed into 455 distinct families corresponding to compound classes, 49% of which are only found in single species. We performed metabolomics and genetic engineering to correlate genotypes to phenotypes, as demonstrated for the metabolite aurasperone, and by heterologous transfer of citrate production to Aspergillus nidulans. Experimental and computational analyses showed that both secondary metabolism and regulation are key factors that are significant in the delineation of Aspergillus species.


Assuntos
Aspergillus/genética , Especiação Genética , Variação Genética , Genoma Fúngico , Aspergillus/classificação , Aspergillus/metabolismo , Sequência de Bases , Metabolismo dos Carboidratos/genética , Genoma Fúngico/genética , Família Multigênica , Filogenia , Especificidade da Espécie , Sequenciamento Completo do Genoma
3.
Artigo em Inglês | MEDLINE | ID: mdl-25754864

RESUMO

Enzymes active on components of lignocellulosic biomass are used for industrial applications ranging from food processing to biofuels production. These include a diverse array of glycoside hydrolases, carbohydrate esterases, polysaccharide lyases and oxidoreductases. Fungi are prolific producers of these enzymes, spurring fungal genome sequencing efforts to identify and catalogue the genes that encode them. To facilitate the functional annotation of these genes, biochemical data on over 800 fungal lignocellulose-degrading enzymes have been collected from the literature and organized into the searchable database, mycoCLAP (http://mycoclap.fungalgenomics.ca). First implemented in 2011, and updated as described here, mycoCLAP is capable of ranking search results according to closest biochemically characterized homologues: this improves the quality of the annotation, and significantly decreases the time required to annotate novel sequences. The database is freely available to the scientific community, as are the open source applications based on natural language processing developed to support the manual curation of mycoCLAP. Database URL: http://mycoclap.fungalgenomics.ca.


Assuntos
Mineração de Dados , Bases de Dados Genéticas , Enzimas , Proteínas Fúngicas , Genes Fúngicos , Lignina/metabolismo , Processamento de Linguagem Natural , Curadoria de Dados , Enzimas/genética , Enzimas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
4.
PLoS One ; 7(6): e39914, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768168

RESUMO

BACKGROUND: The retinoblastoma tumour suppressor, Rb, has two major functions. First, it represses genes whose products are required for S-phase entry and progression thus stabilizing cells in G1. Second, Rb interacts with factors that induce cell-cycle exit and terminal differentiation. Dictyostelium lacks a G1 phase in its cell cycle but it has a retinoblastoma orthologue, rblA. METHODOLOGY/PRINCIPAL FINDINGS: Using microarray analysis and mRNA-Seq transcriptional profiling, we show that RblA strongly represses genes whose products are involved in S phase and mitosis. Both S-phase and mitotic genes are upregulated at a single point in late G2 and again in mid-development, near the time when cell cycling is reactivated. RblA also activates a set of genes unique to slime moulds that function in terminal differentiation. CONCLUSIONS: Like its mammalian counterpart Dictyostelium, RblA plays a dual role, regulating cell-cycle progression and transcriptional events leading to terminal differentiation. In the absence of a G1 phase, however, RblA functions in late G2 controlling the expression of both S-phase and mitotic genes.


Assuntos
Dictyostelium/citologia , Dictyostelium/genética , Regulação da Expressão Gênica no Desenvolvimento , Mitose/genética , Proteína do Retinoblastoma/química , Fase S/genética , Homologia de Sequência de Aminoácidos , Temperatura Baixa , Redes Reguladoras de Genes/genética , Genes Controladores do Desenvolvimento/genética , Genes de Protozoários/genética , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA