Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(25): e202303250, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38411403

RESUMO

Visible light-induced charge separation and directional charge transfer are cornerstones for artificial photosynthesis and the generation of solar fuels. Here, we report synthetic access to a series of noble metal-free donor-acceptor dyads based on bodipy light-absorbers and redox-active quinone/anthraquinone charge storage sites. Peripheral functionalization of the quinone/anthraquinone units with alkynes primes the dyads for integration into a range of light-harvesting systems, e. g., by Cu-catalyzed cycloadditions (CLICK chemistry) or Pd-catalyzed C-C cross-coupling reactions. Initial photophysical, electrochemical and theoretical analyses reveal the principal processes during the light-induced charge separation in the reported dyads.

2.
Macromol Rapid Commun ; 45(5): e2300448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232973

RESUMO

Soft matter integration of photosensitizers and catalysts provides promising solutions to developing sustainable materials for energy conversion. Particularly, hydrogels bring unique benefits, such as spatial control and 3D-accessibility of molecular units, as well as recyclability. Herein, the preparation of polyampholyte hydrogels based on poly(dehydroalanine) (PDha) is reported. Chemically crosslinked PDha with bis-epoxy poly(ethylene glycol) leads to a transparent, self-supporting hydrogel. Due to the ionizable groups on PDha, this 3D polymeric matrix can be anionic, cationic, or zwitterionic depending on the pH value, and its high density of dynamic charges has a potential for electrostatic attachment of charged molecules. The integration of the cationic molecular photosensitizer [Ru(bpy)3 ]2+ (bpy = 2,2'-bipyridine) is realized, which is a reversible process controlled by pH, leading to light harvesting hydrogels. They are further combined with either a thiomolybdate catalyst ([Mo3 S13 ]2- ) for hydrogen evolution reaction (HER) or a cobalt polyoxometalate catalyst (Co4 POM = [Co4 (H2 O)2 (PW9 O34 )2 ]10- ) for oxygen evolution reaction (OER). Under the optimized condition, the resulting hydrogels show catalytic activity in both cases upon visible light irradiation. In the case of OER, higher photosensitizer stability is observed compared to homogeneous systems, as the polymer environment seems to influence decomposition pathways.


Assuntos
Alanina/análogos & derivados , Hidrogéis , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/química , Hidrogéis/química , Luz , Catálise
3.
Chemistry ; 29(15): e202203469, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36519520

RESUMO

CLICK-chemistry has become a universal route to covalently link organic molecules functionalized with azides and alkynes, respectively. Here, we report how CLICK-chemistry can be used to attach oligoaromatic organic moieties to Dawson-type polyoxometalates. In step one, the lacunary Dawson anion [α2 -P2 W17 O61 ]6- is functionalized with phosphonate anchors featuring peripheral azide groups. In step two, this organic-inorganic hybrid undergoes microwave-assisted CLICK coupling. We demonstrate the versatility of this route to access a series of Dawson anions covalently functionalized with oligoaromatic groups. The supramolecular chemistry and aggregation of these systems in solution is explored, and we report distinct changes in charge-transfer behavior depending on the size of the oligoaromatic π-system.

4.
Chemistry ; 29(13): e202203220, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458818

RESUMO

The design of efficient and stable oxygen evolution reaction (OER) catalysts based on noble-metal-free materials is crucial for energy conversion and storage. In this work, it was demonstrated how polyoxometalate (POM)-doped ZIF-67 can be converted into a stable oxygen evolution electrocatalyst by chemical etching, cation exchange, and thermal annealing steps. Characterization by X-ray photoelectron spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy and Raman spectroscopy indicate that POM-doped ZIF-67 derived carbon-supported metal oxides were synthesized. The resulting composite shows structural and compositional advantages which lead to low overpotential (306 mV at j=10 mA ⋅ cm-2 ) and long-term stability under harsh OER conditions (1.0 M aqueous KOH).

5.
Chemistry ; 29(72): e202302284, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37699127

RESUMO

Nature uses reactive components embedded in biological membranes to perform light-driven photosynthesis. Here, a model artificial photosynthetic system for light-driven hydrogen (H2 ) evolution is reported. The system is based on liposomes where amphiphilic ruthenium trisbipyridine based photosensitizer (RuC9 ) and the H2 evolution reaction (HER) catalyst [Mo3 S13 ]2- are embedded in biomimetic phospholipid membranes. When DMPC was used as the main lipid of these light-active liposomes, increased catalytic activity (TONCAT ~200) was observed compared to purely aqueous conditions. Although all tested lipid matrixes, including DMPC, DOPG, DPPC and DOPG liposomes provided similar liposomal structures according to TEM analysis, only DMPC yielded high H2 amounts. In situ scanning electrochemical microscopy (SECM) measurements using Pd microsensors revealed an induction period of around 26 minutes prior to H2 evolution, indicating an activation mechanism which might be induced by the fluid-gel phase transition of DMPC at room temperature. Stern-Volmer-type quenching studies revealed that electron transfer dynamics from the excited state photosensitizer are most efficient in the DMPC lipid environment giving insight for design of artificial photosynthetic systems using lipid bilayer membranes.


Assuntos
Bicamadas Lipídicas , Lipossomos , Bicamadas Lipídicas/química , Lipossomos/química , Dimiristoilfosfatidilcolina/química , Fármacos Fotossensibilizantes , Fosfolipídeos/química
6.
Inorg Chem ; 62(3): 1218-1225, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36630536

RESUMO

The organo-functionalization of metal oxides is a key strategy to introduce new functionalities. Often, phosphonates are used to anchor organic moieties to a range of metal oxides. Despite their widespread use, there is a lack of understanding of the parameters which enable selective and efficient formation of organophosphonate-metal oxide hybrids. Here, we report fundamental insights into the mechanism of phosphonate anchoring to a molecular metal oxide model. Specifically, we use in situ 31P NMR spectroscopy to follow the acid-catalyzed deprotection of a model phosphonate and its subsequent condensation to form a phosphonate-functionalized Dawson-polyoxometalate. Our study shows that the nucleophilicity of the acid anion is a key parameter which controls the clean and selective deprotection and polyoxometalate attachment of phosphonates. This insight will allow researchers to expand the scope of phosphonate anchoring to metal oxides by enabling the development of mild and scalable syntheses.


Assuntos
Organofosfonatos , Organofosfonatos/química , Ácidos Fosforosos/química , Óxidos/química , Catálise
7.
Angew Chem Int Ed Engl ; 62(50): e202314999, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37889729

RESUMO

The activation of molecular hydrogen is a key process in catalysis. Here, we demonstrate how polyoxometalate (POM)-based heterogeneous compounds functionalized with Platinum particles activate H2 by synergism between a hydrogen spillover mechanism and electron-proton transfer by the POM. This interplay facilitates the selective catalytic reduction of olefins and nitroarenes with high functional group tolerance. A family of polyoxotungstates covalently functionalized with boronic acids is reported. In the solid-state, the compounds are held together by non-covalent interactions (π-π stacking and hydrogen bonding). The resulting heterogeneous nanoscale particles form stable colloidal dispersions in acetonitrile and can be surface-functionalized with platinum nanoparticles by in situ photoreduction. The resulting materials show excellent catalytic activity in hydrogenation of olefins and nitrobenzene derivatives under mild conditions (1 bar H2 and room temperature).

8.
Angew Chem Int Ed Engl ; 62(22): e202217196, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36876900

RESUMO

Heterogeneous light-driven catalysis is a cornerstone of sustainable energy conversion. Most catalytic studies focus on bulk analyses of the hydrogen and oxygen evolved, which impede the correlation of matrix heterogeneities, molecular features, and bulk reactivity. Here, we report studies of a heterogenized catalyst/photosensitizer system using a polyoxometalate water oxidation catalyst and a model, molecular photosensitizer that were co-immobilized within a nanoporous block copolymer membrane. Via operando scanning electrochemical microscopy (SECM), light-induced oxygen evolution was determined using sodium peroxodisulfate (Na2 S2 O8 ) as sacrificial electron acceptor. Ex situ element analyses provided spatially resolved information on the local concentration and distribution of the molecular components. Infrared attenuated total reflection (IR-ATR) studies of the modified membranes showed no degradation of the water oxidation catalyst under the reported light-driven conditions.

9.
Angew Chem Int Ed Engl ; 61(28): e202114106, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35698245

RESUMO

Light-driven homogeneous and heterogeneous catalysis require a complex interplay between light absorption, charge separation, charge transfer, and catalytic turnover. Optical and irradiation parameters as well as reaction engineering aspects play major roles in controlling catalytic performance. This multitude of factors makes it difficult to objectively compare light-driven catalysts and provide an unbiased performance assessment. This Scientific Perspective highlights the importance of collecting and reporting experimental data in homogeneous and heterogeneous light-driven catalysis. A critical analysis of the benefits and limitations of the commonly used experimental indicators is provided. Data collection and reporting according to FAIR principles is discussed in the context of future automated data analysis. The authors propose a minimum dataset as a basis for unified collecting and reporting of experimental data in homogeneous and heterogeneous light-driven catalysis. The community is encouraged to support the future development of this parameter list through an open online repository.

10.
Angew Chem Int Ed Engl ; 61(9): e202114548, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34936179

RESUMO

Molecular metal oxides are key materials in diverse fields like energy storage and conversion, molecular magnetism and as model systems for solid-state metal oxides. To improve their performance and increase the variety of accessible motifs, new synthetic approaches are necessary. Herein, we report a universal, new precursor to access different metal-functionalized polyoxovanadate (POV) clusters. The precursor is synthesized by a novel solid-state thermal treatment procedure. Solution-phase test reactions at room temperature and pressure show that reaction of the precursor with various metal nitrate salts gives access to a range of metal-functionalized POVs. The first nitrate-templated molecular calcium vanadate cluster is reported. We show that this precursor could open new access routes to POV components for molecular magnetism, energy technologies or catalysis.

11.
Angew Chem Int Ed Engl ; 61(38): e202202650, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35381106

RESUMO

The oxygen reduction reaction (ORR) is a key energy conversion process, which is critical for the efficient operation of fuel cells and metal-air batteries. Here, we report the significant enhancement of the ORR-performance of commercial platinum-on-carbon electrocatalysts when operated in aqueous electrolyte solutions (pH 5.6), containing the polyoxoanion [Fe28 (µ3 -O)8 (L-(-)-tart)16 (CH3 COO)24 ]20- . Mechanistic studies provide initial insights into the performance-improving role of the iron oxide cluster during ORR. Technological deployment of the system is demonstrated by incorporation into a direct formate microfluidic fuel cell (DFMFC), where major performance increases are observed when compared with reference electrolytes. The study provides the first examples of iron oxide clusters in electrochemical energy conversion and storage.

12.
Chemistry ; 27(53): 13435-13441, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34288174

RESUMO

Polyoxometalates (POMs) have emerged as material of interest in many applications such as energy storage and conversion due to their redox activity and molecularly defined structure. However, especially for polyoxovanadates a lack of understanding between structural modifications and physicochemical properties remains. The present study leverages a lacunary dodecavanadate to systematically investigate the electronic effect of heterometal functionalization. While structural distortion affects the stability of the cluster, the redox potentials correlate with the overall cluster charge. Furthermore, we report the first bromide-templated analogue of this cluster family. While the halide anion is crucial for the formation of the cluster, no major effect on the electrochemical properties is observed. By improving the understanding of structure-property relationship in this work, we hope to enable a more predictable tuning of redox-properties of polyoxovandates.


Assuntos
Óxidos , Vanádio , Ânions , Eletroquímica , Oxirredução
13.
Chemistry ; 27(68): 17181-17187, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34519409

RESUMO

The covalent attachment of molecular photosensitizers (PS) to polyoxometalates (POMs) opens new pathways to PS-POM dyads for light-driven charge-transfer and charge-storage. Here, we report a synthetic route for the covalent linkage of BODIPY-dyes to Anderson-type polyoxomolybdates by using CLICK chemistry (i. e. copper-catalyzed azide-alkyne cycloaddition, CuAAC). Photophysical properties of the dyad were investigated by combined experimental and theoretical methods and highlight the role of both sub-components for the charge-separation properties. The study demonstrates how CLICK chemistry can be used for the versatile linkage of organic functional units to molecular metal oxide clusters.


Assuntos
Química Click , Fármacos Fotossensibilizantes , Ânions , Azidas , Compostos de Boro , Polieletrólitos
14.
Chemistry ; 27(68): 16924-16929, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33547705

RESUMO

An effective strategy to enhance the performance of inorganic semiconductors is moving towards organic-inorganic hybrid materials. Here, we report the design of core-shell hybrid materials based on a TiO2 core functionalized with a polyampholytic (poly(dehydroalanine)-graft-(n-propyl phosphonic acid acrylamide) shell (PDha-g-PAA@TiO2 ). The PDha-g-PAA shell facilitates the efficient immobilization of the photosensitizer Eosin Y (EY) and enables electronic interactions between EY and the TiO2 core. This resulted in high visible-light-driven H2 generation. The enhanced light-driven catalytic activity is attributed to the unique core-shell design with the graft copolymer acting as bridge and facilitating electron and proton transfer, thereby also preventing the degradation of EY. Further catalytic enhancement of PDha-g-PAA@TiO2 was possible by introducing [Mo3 S13 ]2- cluster anions as hydrogen-evolution cocatalyst. This novel design approach is an example for a multi-component system in which reactivity can in future be independently tuned by selection of the desired molecular or polymeric species.

15.
Chemistry ; 27(68): 17078-17086, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34523763

RESUMO

We report IR and UV/Vis spectroscopic signatures that allow discriminating between the oxidation states of the manganese-based water oxidation catalyst [(Mn4 O4 )(V4 O13 )(OAc)3 ]3- . Simulated IR spectra show that V=O stretching vibrations in the 900-1000 cm-1 region shift consistently by about 20 cm-1 per oxidation equivalent. Multiple bands in the 1450-1550 cm-1 region also change systematically upon oxidation/reduction. The computed UV/Vis spectra predict that the spectral range above 350 nm is characteristic of the managanese-oxo cubane oxidation state, whereas transitions at higher energy are due to the vanadate ligand. The presence of absorption signals above 680 nm is indicative of the presence of MnIII atoms. Spectroelectrochemical measurements of the oxidation from [Mn 2 III Mn 2 IV ] to [Mn 4 IV ] showed that the change in oxidation state can indeed be tracked by both IR and UV/Vis spectroscopy.


Assuntos
Manganês , Água , Catálise , Oxirredução , Oxigênio
16.
Chemistry ; 27(68): 16846-16852, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34719797

RESUMO

Multifunctional supramolecular systems are a central research topic in light-driven solar energy conversion. Here, we report a polyoxometalate (POM)-based supramolecular dyad, where two platinum-complex hydrogen evolution catalysts are covalently anchored to an Anderson polyoxomolybdate anion. Supramolecular electrostatic coupling of the system to an iridium photosensitizer enables visible light-driven hydrogen evolution. Combined theory and experiment demonstrate the multifunctionality of the POM, which acts as photosensitizer/catalyst-binding-site[1] and facilitates light-induced charge-transfer and catalytic turnover. Chemical modification of the Pt-catalyst site leads to increased hydrogen evolution reactivity. Mechanistic studies shed light on the role of the individual components and provide a molecular understanding of the interactions which govern stability and reactivity. The system could serve as a blueprint for multifunctional polyoxometalates in energy conversion and storage.

17.
Chemistry ; 27(12): 4081-4088, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33241590

RESUMO

In this work, we present a new synthetic strategy for fourfold-substituted perylene monoimides via tetrabrominated perylene monoanhydrides. X-ray diffraction analysis unveiled the intramolecular stacking orientation between the substituents and semicircular packing behavior. We observed the remarkable influence of the substituent on the longevity and nature of the excited state upon visible light excitation. In the presence of poly(dehydroalanine)-graft-poly(ethylene glycol) graft copolymers as solubilizing template, the chromophores are capable of sensitizing [Mo3 S13 ]2- clusters in aqueous solution for stable visible light driven hydrogen evolution over three days.

18.
Chemistry ; 27(68): 17188-17202, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34585790

RESUMO

The unique optical and photoredox properties of heptazine-based polymeric carbon nitride (PCN) materials make them promising semiconductors for driving various productive photocatalytic conversions. However, their typical absorption onset at ca. 430-450 nm is still far from optimum for efficient sunlight harvesting. Despite many reports of successful attempts to extend the light absorption range of PCNs, the determination of the structural features responsible for the red shift of the light absorption edge beyond 450 nm has often been obstructed by the highly disordered structure of PCNs and/or low content of the moieties responsible for changes in optical and electronic properties. In this work, we implement a high-temperature (900 °C) treatment procedure for turning the conventional melamine-derived yellow PCN into a red carbon nitride. This approach preserves the typical PCN structure but incorporates a new functionality that promotes visible light absorption. A detailed characterization of the prepared material reveals that partial heptazine fragmentation accompanied by de-ammonification leads to the formation of azo-groups in the red PCN, a chromophore moiety whose role in shifting the optical absorption edge of PCNs has been overlooked so far. These azo moieties can be activated under visible-light (470 nm) for H2 evolution even without any additional co-catalyst, but are also responsible for enhanced charge-trapping and radiative recombination, as shown by spectroscopic studies.

19.
Inorg Chem ; 60(3): 1472-1479, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33434012

RESUMO

The linkage of molecular components into functional heterogeneous framework materials has revolutionized modern materials chemistry. Here, we use this principle to design polyoxometalate-based frameworks as high affinity adsorbents for drugs of abuse, leading to their application in solid-phase extraction analysis. The frameworks are assembled by the reaction of a Keggin-type polyanion, [SiW12O40]4-, with lanthanoids Dy(III), La(III), Nd(III), and Sm(III) and the multidentate linking ligand 1,10-phenanthroline-2,9-dicarboxylic acid (H2PDA). Their reaction leads to the formation of crystalline 1D coordination polymers. Because of the charge mismatch between the lanthanoids (+3) and the dodecasilicotungstate (-4), we observe incorporation of the PDA2- ligands into crystalline materials, leading to four polyoxometalate-based frameworks where Keggin-type heteropolyanions are linked by cationic {Lnn(PDA)n} groups (Ln = Dy (1), La (2), Nd (3), and Sm (4)). Structural analysis of the polyoxometalate-based frameworks suggested that they might be suitable for surface binding of common drugs of abuse via supramolecular interactions. To this end, they were used for the extraction and quantitative determination of four model drugs of abuse (amphetamine, methamphetamine, codeine, and morphine) by using micro-solid-phase extraction (D-µSPE) and high-performance liquid chromatography (HPLC). The method showed wide linear ranges, low limits of detection (0.1-0.3 ng mL-1), high precision, and satisfactory spiked recoveries. Our results demonstrate that polyoxometalate-based frameworks are suitable sorbents in D-µSPE for molecules containing amine functionalities. The modular design of these networks could in the future be used to expand and tune their substrate binding behavior.


Assuntos
Anfetamina/isolamento & purificação , Codeína/isolamento & purificação , Cabelo/química , Estruturas Metalorgânicas/química , Metanfetamina/isolamento & purificação , Morfina/isolamento & purificação , Compostos de Tungstênio/química , Adsorção , Anfetamina/química , Codeína/química , Voluntários Saudáveis , Humanos , Estruturas Metalorgânicas/síntese química , Metanfetamina/química , Estrutura Molecular , Morfina/química
20.
Angew Chem Int Ed Engl ; 60(14): 7522-7532, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32881270

RESUMO

Molecular vanadium oxides, or polyoxovanadates (POVs), have recently emerged as a new class of molecular energy conversion/storage materials, which combine diverse, chemically tunable redox behavior and reversible multielectron storage capabilities. This Review explores current challenges, major breakthroughs, and future opportunities in the use of POVs for energy conversion and storage. The reactivity, advantages, and limitations of POVs are explored, with a focus on their use in lithium and post-lithium-ion batteries, redox-flow batteries, and light-driven energy conversion. Finally, emerging themes and new research directions are critically assessed to provide inspiration for how this promising materials class can advance research in sustainable energy technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA