Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
ACS Omega ; 9(13): 14805-14817, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585136

RESUMO

Vascular diseases are the largest cause of death globally and impose a major global burden on healthcare. The gold standard for treating vascular diseases is the transplantation of autologous veins, if applicable. Alternative treatments still suffer from shortcomings, including low patency, lack of growth potential, the need for repeated intervention, and a substantial risk of developing infections. The use of a vascular ECM scaffold reconditioned with the patient's own cells has shown successful results in preclinical and clinical studies. In this study, we have compared the proteomes of personalized tissue-engineered veins of humans and pigs. By applying tandem mass tag (TMT) labeling LC/MS-MS, we have investigated the proteome of decellularized (DC) veins from humans and pigs and reconditioned (RC) DC veins produced through perfusion with the patient's whole blood in STEEN solution, applying the same technology as used in the preclinical studies. The results revealed high similarity between the proteomes of human and pig DC and RC veins, including the ECM texture after decellularization and reconditioning. In addition, functional enrichment analysis showed similarities in signaling pathways and biological processes involved in the immune system response. Furthermore, the classification of proteins involved in immune response activity that were detected in human and pig RC veins revealed proteins that evoke immunogenic responses, which may lead to graft rejection, thrombosis, and inflammation. However, the results from this study imply the initiation of wound healing rather than an immunogenic response, as both systems share the same processes, and no immunogenic response was reported in the preclinical and clinical studies. Finally, our study assessed the application of STEEN solution in tissue engineering and identified proteins that may be useful for the prediction of successful transplantations.

2.
Biomed Tech (Berl) ; 68(5): 493-501, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36999273

RESUMO

OBJECTIVES: Patients with urethral stricture due to any type of trauma, hypospadias or gender dysphoria suffer immensely from impaired capacity to urinate and are in need of a new functional urethra. Tissue engineering with decellularization of a donated organ recellularized with cells from the recipient patient has emerged as a promising alternative of advanced therapy medicinal products. The aim of this pilot study was to develop an ovine model of urethral transplantation and to produce an individualized urethra graft to show proof of function in vivo. METHODS: Donated urethras from ram abattoir waste were decellularized and further recellularized with autologous buccal mucosa epithelial cells excised from the recipient ram and expanded in vitro. The individualized urethral grafts were implanted by reconstructive surgery in rams replacing 2.5 ± 0.5 cm of the native penile urethra. RESULTS: After surgery optimization, three ram had the tissue engineered urethra implanted for one month and two out of three showed a partially regenerated epithelium. CONCLUSIONS: Further adjustments of the model are needed to achieve a satisfactory proof-of-concept; however, we interpret these findings as a proof of principle and a possible path to develop a functional tissue engineered urethral graft with de- and recellularization and regeneration in vivo after transplantation.


Assuntos
Procedimentos de Cirurgia Plástica , Uretra , Humanos , Ovinos , Animais , Masculino , Uretra/cirurgia , Mucosa Bucal/transplante , Projetos Piloto , Modelos Animais
3.
Biomater Sci ; 11(11): 3860-3877, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37078624

RESUMO

Tissue engineering is a promising methodology to produce advanced therapy medicinal products (ATMPs). We have developed personalized tissue engineered veins (P-TEV) as an alternative to autologous or synthetic vascular grafts utilized in reconstructive vein surgery. Our hypothesis is that individualization through reconditioning of a decellularized allogenic graft with autologous blood will prime the tissue for efficient recellularization, protect the graft from thrombosis, and decrease the risk of rejection. In this study, P-TEVs were transplanted to vena cava in pig, and the analysis of three veins after six months, six veins after 12 months and one vein after 14 months showed that all P-TEVs were fully patent, and the tissue was well recellularized and revascularized. To confirm that the ATMP product had the expected characteristics one year after transplantation, gene expression profiling of cells from P-TEV and native vena cava were analyzed and compared by qPCR and sequencing. The qPCR and bioinformatics analysis confirmed that the cells from the P-TEV were highly similar to the native cells, and we therefore conclude that P-TEV is functional and safe in large animals and have high potential for use as a clinical transplant graft.


Assuntos
Engenharia Tecidual , Veias , Animais , Suínos , Engenharia Tecidual/métodos , Veias/transplante , Células Endoteliais , Perfilação da Expressão Gênica
4.
Regen Ther ; 21: 331-341, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36110971

RESUMO

Patients with cardiovascular disease often need replacement or bypass of a diseased blood vessel. With disadvantages of both autologous blood vessels and synthetic grafts, tissue engineering is emerging as a promising alternative of advanced therapy medicinal products for individualized blood vessels. By reconditioning of a decellularized blood vessel with the recipient's own peripheral blood, we have been able to prevent rejection without using immunosuppressants and prime grafts for efficient recellularization in vivo. Recently, decellularized veins reconditioned with autologous peripheral blood were shown to be safe and functional in a porcine in vivo study as a potential alternative for vein grafting. In this study, personalized tissue engineered arteries (P-TEA) were developed using the same methodology and evaluated for safety in a sheep in vivo model of carotid artery transplantation. Five personalized arteries were transplanted to carotid arteries and analyzed for safety and patency as well as with histology after four months in vivo. All grafts were fully patent without any occlusion or stenosis. The tissue was well cellularized with a continuous endothelial cell layer covering the luminal surface, revascularized adventitia with capillaries and no sign of rejection or infection. In summary, the results indicate that P-TEA is safe to use and has potential as clinical grafts.

5.
Cells ; 11(24)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36552838

RESUMO

Decellularized nerve allografts (DC) are an alternative to autografts (AG) for repairing severe peripheral nerve injuries. We have assessed a new DC provided by VERIGRAFT. The decellularization procedure completely removed cellularity while preserving the extracellular matrix. We first assessed the DC in a 15 mm gap in the sciatic nerve of rats, showing slightly delayed but effective regeneration. Then, we assayed the DC in a 70 mm gap in the peroneal nerve of sheep compared with AG. Evaluation of nerve regeneration and functional recovery was performed by clinical, electrophysiology and ultrasound tests. No significant differences were found in functional recovery between groups of sheep. Histology showed a preserved fascicular structure in the AG while in the DC grafts regenerated axons were grouped in small units. In conclusion, the DC was permissive for axonal regeneration and allowed to repair a 70 mm long gap in the sheep nerve.


Assuntos
Tecido Nervoso , Nervo Isquiático , Ratos , Animais , Ovinos , Nervo Isquiático/patologia , Transplante Homólogo/métodos , Transplante Autólogo/métodos , Autoenxertos/transplante , Regeneração Nervosa/fisiologia
6.
Arterioscler Thromb Vasc Biol ; 30(7): 1389-97, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20431067

RESUMO

OBJECTIVE: To develop an embryoid body-free directed differentiation protocol for the rapid generation of functional vascular endothelial cells derived from human embryonic stem cells (hESCs) and to assess the system for microRNA regulation and angiogenesis. METHODS AND RESULTS: The production of defined cell lineages from hESCs is a critical requirement for evaluating their potential in regenerative medicine. We developed a feeder- and serum-free protocol. Directed endothelial differentiation of hESCs revealed rapid loss of pluripotency markers and progressive induction of mRNA and protein expression of vascular markers (including CD31 and vascular endothelial [VE]-cadherin) and angiogenic growth factors (including vascular endothelial growth factor), increased expression of angiogenesis-associated microRNAs (including miR-126 and miR-210), and induction of endothelial cell morphological features. In vitro, differentiated cells produced nitric oxide, migrated across a wound, and formed tubular structures in both the absence and the presence of 3D matrices (Matrigel). In vivo, we showed that cells that differentiated for 10 days before implantation were efficient at the induction of therapeutic neovascularization and that hESC-derived cells were incorporated into the blood-perfused vasculature of recipient mice. CONCLUSIONS: The directed differentiation of hESCs is efficient and effective for the differentiation of functional endothelial cells from hESCs.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/metabolismo , Isquemia/fisiopatologia , MicroRNAs/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Cicatrização , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula , Movimento Celular , Forma Celular , Meios de Cultura Livres de Soro , Modelos Animais de Doenças , Células-Tronco Embrionárias/transplante , Células Endoteliais/transplante , Regulação da Expressão Gênica no Desenvolvimento , Membro Posterior , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/cirurgia , Camundongos , Neovascularização Fisiológica/genética , Óxido Nítrico/metabolismo , RNA Mensageiro/metabolismo , Transplante de Células-Tronco , Fatores de Tempo , Transfecção , Cicatrização/genética
7.
Biochem J ; 432(1): 21-33, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20854259

RESUMO

The propensity of human embryonic stem cells to die upon enzymatic disaggregation or low-density plating is an obstacle to their isolation and routine use in drug discovery and basic research. Equally, the very low rate of establishment of implanted cells hinders cell therapy. In the present study we have developed a high-content assay for human embryonic stem cell survival and used this to screen a range of libraries of 'lead-like' small molecules and known bioactives. From this we identified 18 confirmed hits with four structural classes being represented by multiple compounds: a series of 5-(acyl/alkyl-amino)indazoles, compounds with a 4-(acylamino)pyridine core, simple N6,N6-dialkyladenines and compounds with a 5-(acylamino)indolinone core. In vitro kinase profiling indicated that the ROCK (Rho-associated kinase)/PRK2 (protein kinase C-related kinase 2) protein kinases are of pivotal importance for cell survival and identified previously unreported compound classes that inhibited this important biological activity. An evaluation using an extensive panel of protein kinases showed that six of our hit compounds exhibited better selectivity for ROCK inhibition than the routinely used commercially available ROCK inhibitor Y-27632. In this screen we also identified the K(+)-ATP channel opener pinacidil and show that it probably promotes cell survival, by 'off-target' inhibition of ROCK/PRK2. We have therefore identified novel pro-survival compounds of greater specificity, equivalent potency and reduced toxicity relative to the routinely employed ROCK inhibitor Y-27632.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Amidas/farmacologia , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Compostos Heterocíclicos/química , Humanos , Indazóis/química , Indazóis/farmacologia , Estrutura Molecular , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/química , Piridinas/química , Piridinas/farmacologia , Fatores de Tempo , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
8.
J Tissue Eng Regen Med ; 15(10): 818-830, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34318614

RESUMO

Personalized tissue engineered vascular grafts are a promising advanced therapy medicinal product alternative to autologous or synthetic vascular grafts utilized in blood vessel bypass or replacement surgery. We hypothesized that an individualized tissue engineered vein (P-TEV) would make the body recognize the transplanted blood vessel as autologous, decrease the risk of rejection and thereby avoid lifelong treatment with immune suppressant medication as is standard with allogenic organ transplantation. To individualize blood vessels, we decellularized vena cava from six deceased donor pigs and tested them for cellular removal and histological integrity. A solution with peripheral blood from the recipient pigs was used for individualized reconditioning in a perfusion bioreactor for seven days prior to transplantation. To evaluate safety and functionality of the individualized vascular graft in vivo, we transplanted reconditioned porcine vena cava into six pigs and analyzed histology and patency of the graft at different time points, with three pigs at the final endpoint 4-5 weeks after surgery. Our results showed that the P-TEV was fully patent in all animals, did not induce any occlusion or stenosis formation and we did not find any signs of rejection. The P-TEV showed rapid recellularization in vivo with the luminal surface covered with endothelial cells. In summary, the results indicate that P-TEV is functional and have potential for use as clinical transplant grafts.


Assuntos
Prótese Vascular , Estudo de Prova de Conceito , Engenharia Tecidual , Veias/fisiologia , Animais , Suínos , Grau de Desobstrução Vascular , Veias/transplante , Veias/ultraestrutura
9.
Stem Cells ; 27(8): 1812-21, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19544424

RESUMO

Human embryonic stem (hES) cells have been suggested as a cell source for the repair of cartilage lesions. Here we studied how coculture with human articular chondrocytes affects the expansion potential, morphology, expression of surface markers, and differentiation abilities of hES cells, with special regard to chondrogenic differentiation. Undifferentiated hES cells were cocultured with irradiated neonatal or adult articular chondrocytes in high-density pellet mass cultures for 14 days. Cocultured hES cells were then expanded on plastic and their differentiation potential toward the adipogenic, osteogenic, and chondrogenic lineages was compared with that of undifferentiated hES cells. The expression of different surface markers was investigated using flow cytometry and teratoma formation was studied using injection of the cells under the kidney capsule. Our results demonstrate that although hES cells have to be grown on Matrigel, the cocultured hES cells could be massively expanded on plastic with a morphology and expression of surface markers similar to mesenchymal stem cells. Coculture further resulted in a more homogenous pellet and significantly increased cartilage matrix production, both in high-density pellet mass cultures and hyaluronan-based scaffolds. Moreover, cocultured cells formed colonies in agarose suspension culture, also demonstrating differentiation toward chondroprogenitor cells, whereas no colonies were detected in the hES cell cultures. Coculture further resulted in a significantly decreased osteogenic potential. No teratoma formation was detected. Our results confirm the potential of the culture microenvironment to influence hES cell morphology, expansion potential, and differentiation abilities over several population doublings.


Assuntos
Cartilagem Articular/citologia , Condrócitos/citologia , Células-Tronco Embrionárias/citologia , Animais , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Condrócitos/metabolismo , Condrogênese , Técnicas de Cocultura/métodos , Criopreservação , Citometria de Fluxo , Humanos , Cariotipagem , Camundongos , Fenótipo
10.
Stem Cells ; 26(1): 119-26, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17962703

RESUMO

It has previously been shown that the phage-derived phiC31 integrase can efficiently target native pseudo-attachment sites in the genome of various species in cultured cells, as well as in vivo. To demonstrate its utility in human embryonic stem cells (hESC), we have created hESC-derived clones containing expression constructs. Variant human embryonic stem cell lines BG01v and SA002 were used to derive lines expressing a green fluorescent protein (GFP) marker under control of either the human Oct4 promoter or the EF1alpha promoter. Stable clones were selected by antibiotic resistance and further characterized. The frequency of integration suggested candidate hot spots in the genome, which were mapped using a plasmid rescue strategy. The pseudo-attP profile in hESC differed from those reported earlier in differentiated cells. Clones derived using this method retained the ability to differentiate into all three germ layers, and fidelity of expression of GFP was verified in differentiation assays. GFP expression driven by the Oct4 promoter recapitulated endogenous Oct4 expression, whereas persistent stable expression of GFP expression driven by the EF1alpha promoter was seen. Our results demonstrate the utility of phiC31 integrase to target pseudo-attP sites in hESC and show that integrase-mediated site-specific integration can efficiently create stably expressing engineered human embryonic stem cell clones.


Assuntos
Células-Tronco Embrionárias/fisiologia , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Integrases/metabolismo , Sítios de Ligação Microbiológicos/genética , Bacteriófagos , Diferenciação Celular/fisiologia , Linhagem Celular , Clonagem Molecular , Células-Tronco Embrionárias/citologia , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Fator 3 de Transcrição de Octâmero/genética , Fator 1 de Elongação de Peptídeos/genética , Plasmídeos/genética , Células-Tronco Pluripotentes/fisiologia , Regiões Promotoras Genéticas , Transfecção
11.
Crit Rev Oncol Hematol ; 65(1): 54-80, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17689256

RESUMO

The efficiency and accuracy of the drug development process is severely restricted by the lack of functional human cell systems. However, the successful derivation of pluripotent human embryonic stem (hES) cell lines in the late 1990s is expected to revolutionize biomedical research in many areas. Due to their growth capacity and unique developmental potential to differentiate into almost any cell type of the human body, hES cells have opened novel avenues both in basic and applied research as well as for therapeutic applications. In this review we describe, from an industrial perspective, the basic science that underlies the hES cell technology and discuss the current and future prospects for hES cells in novel and improved stem cell based applications for drug discovery, toxicity testing as well as regenerative medicine.


Assuntos
Células-Tronco Embrionárias/transplante , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular , Desenho de Fármacos , Células-Tronco Embrionárias/fisiologia , Hepatócitos/citologia , Humanos , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/fisiologia , Células-Tronco Pluripotentes/transplante , Controle de Qualidade , Regeneração
12.
Biomaterials ; 29(18): 2749-56, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18400296

RESUMO

Little information is available concerning the generation of renal tubules, but this information is urgently needed in regenerative medicine for the future treatment of acute and chronic renal failures. Of major interests are the integration of stem/progenitor cells, the cellular development and the tubular growth in a spatial environment. In this regard, we investigated the basal aspect of renal tubules generated at the interphase of an artificial interstitium. Stem/progenitor cells derived from neonatal rabbit kidney were mounted inside a specific tissue holder and covered by layers of polyester fleece. The tissue was then kept in a perfusion culture container for 13 days in chemically defined IMDM containing aldosterone (1 x 10(-7)m) as a tubulogenic factor. The spatial development of tubules was registered on whole-mount specimens and on cryo-sections labeled with soybean agglutinin (SBA) and tissue-specific antibodies indicating that collecting duct tubules were developed. Scanning electron microscopy (SEM) revealed that the generated tubules were completely covered by a basal lamina. Most interestingly, the matrix was not consistently composed, but exhibited three categories of pores. The most frequently found pore type had an apparent diameter of 133+/-26 nm followed by a medium-sized pore type of 317+/-35 nm. Another category of pores with a diameter of 605+/-101 nm was rather rarely found. All of the pores were evenly distributed and not restricted to particular sites. The newly detected pores are not related to culture artifacts, since they were also detected in collecting duct tubules of the neonatal rabbit kidney. It remains to be evaluated whether these pores support physiological transport functions or if they indicate the site where extracellular matrix proteins are inserted into newly synthesized basal lamina.


Assuntos
Túbulos Renais/crescimento & desenvolvimento , Engenharia Tecidual/métodos , Animais , Membrana Basal/crescimento & desenvolvimento , Membrana Basal/metabolismo , Membrana Basal/ultraestrutura , Túbulos Renais/metabolismo , Túbulos Renais/ultraestrutura , Túbulos Renais Coletores/crescimento & desenvolvimento , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/ultraestrutura , Microscopia Eletrônica de Varredura , Modelos Biológicos , Coelhos , Engenharia Tecidual/instrumentação
13.
J Biotechnol ; 133(1): 146-53, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17935814

RESUMO

Previous studies have shown that cultivation of undifferentiated human embryonic stem (hES) cells requires human fibroblasts (hF) or mouse embryonic fibroblast (mEF) feeders or a coating matrix such as laminin, fibronectin or Matrigel in combination with mEF or hF conditioned medium. We here demonstrate a successful feeder-free and matrix-free culture system in which undifferentiated hES cells can be cultured directly on plastic surfaces without any supportive coating, in a hF conditioned medium. The hES cells cultured directly on plastic surfaces grow as colonies with morphology very similar to cells cultured on Matrigel(TM). Two hES cell lines SA167 and AS034.1 were adapted to matrix-free growth (MFG) and have so far been cultured up to 43 passages and cryopreserved successfully. The lines maintained a normal karyotype and expressed the expected marker profile of undifferentiated hES cells for Oct-4, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81 and SSEA-1. The hES cells formed teratomas in SCID mice and differentiated in vitro into derivates of all three germ layers. Thus, the MFG-adapted hES cells appear to retain pluripotency and to remain undifferentiated. The present culture system has a clear potential to be scaleable up to a manufacturing level and become the preferred culture system for various applications such as cell therapy and toxicity testing.


Assuntos
Materiais Biocompatíveis/química , Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Plásticos/química , Engenharia Tecidual/métodos , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Matriz Extracelular/química , Humanos
14.
Altern Lab Anim ; 36(2): 129-40, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18522481

RESUMO

Since the differentiation of embryonic stem cells mimics early development, these cells could potentially permit the detection of embryotoxicants which interfere with this process. Although reliable tests based on murine embryonic stem cells exist, no such methods are available for human embryonic stem (hES) cells. Nonetheless, to avoid the false classification of substances due to inter-species differences, human-relevant toxicity tests are needed. We therefore developed an assay based on three human cell types, representing different degrees of developmental maturation, namely, human foreskin fibroblasts, hES cell-derived progenitor cells, and pluripotent hES cells. A set of embryotoxicants for which existing in vivo data were available, namely, all-trans retinoic acid (ATRA), 13-cis retinoic acid (13CRA), valproic acid (VPA) and dimethyl sulphoxide (DMSO), were tested. 5-fluorouracil (5-FU) was used as a positive control, and saccharin as a negative control. Two methods were compared for the assessment of cell viability -- the determination of intracellular ATP content and of resazurin reduction. In addition, the protective capacity of basic fibroblast growth factor (bFGF) against retinoid-induced toxicity was investigated. This novel assay system reliably detected the embryotoxic potentials of the test substances, 5-FU, ATRA, 13-CRA (a substance that displays inter-species differences in its effects) and VPA. This was possible due to the apparent differences in the sensitivities of the human cell types used in the assay system. Thus, our results clearly indicate the advantages and relevance of using hES cells in in vitro developmental toxicity testing.


Assuntos
Citotoxinas/toxicidade , Células-Tronco Embrionárias/citologia , Teratogênicos/toxicidade , Testes de Toxicidade/métodos , Trifosfato de Adenosina/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/fisiologia , Fluoruracila/farmacologia , Humanos , Cinética , Camundongos , Testes de Toxicidade/tendências
15.
Drug Discov Today ; 12(17-18): 688-99, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17826681

RESUMO

The isolation of human embryonic stem cells about a decade ago marked the birth of a new era in biomedical research. These pluripotent stem cells possess unique properties that make them exceptionally useful in a range of applications. Discussions about human stem cells are most often focused around the area of regenerative medicine and indeed, the possibility to apply these cells in cell replacement therapies is highly attractive. More imminent, however, is the employment of stem cell technologies for drug discovery and development. Novel improved in vitro models based on physiologically relevant human cells will result in better precision and more cost-effective assays ultimately leading to lower attrition rates and safe new drugs.


Assuntos
Pesquisa Biomédica/tendências , Desenho de Fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Farmacologia/métodos , Células-Tronco Pluripotentes/efeitos dos fármacos , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Embrionárias/citologia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Testes de Toxicidade/métodos
16.
IDrugs ; 9(10): 702-5, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17016777

RESUMO

Improved technologies are urgently needed to develop effective and safe new drugs in a cost-efficient manner. Cell-based assays have many advantages in drug research, particularly because these assays can be adapted in a high-throughput format. In addition, technological advances in the areas of instrumentation and automation are providing expanding opportunities for high-content analyses. However, in cell-based research, none of these systems is particularly useful unless the cells that are being evaluated are clinically relevant. Pluripotent human stem cells are expected to revolutionize the accessibility to a variety of human cell types. The possibility to propagate pluripotent human stem cells and to subsequently differentiate these cells into desired target cell types will provide a stable supply of cells for a range of applications in drug discovery and toxicity testing. This feature discusses some of the research opportunities for pluripotent human stem cells.


Assuntos
Desenho de Fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Testes de Toxicidade/métodos , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes/citologia
17.
Biomaterials ; 26(22): 4540-9, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15722123

RESUMO

Cartilage is a tissue that derives its unique mechanical and biological properties from the combination of relatively few cells and a large amount of a complex extracellular matrix. Furthermore, cartilage tissue is comparatively slow to respond to changes or harmful influences. To date, the optimal generation and long-term maintenance of cultured human articular cartilage for in vitro testing of biomaterials, poses an experimental difficulty. Experiments using cultured isolated chondrocytes in combination with scaffolds often fail to yield results comparable to the in-vivo situation. Consequently, our aim was to develop a culture method that allows in vitro maintenance of human hyaline cartilage explants in an optimal quality over an extended period of time. Such a culture could, for example, be used to determine the long-term effect of a new scaffold on intact cartilage, as an in vitro model for repair processes and to investigate biomaterial integration. In this study we compared conventional static cultures with and without serum supplementation to a serum-free perfusion culture for the ability to maintain human articular cartilage explants in a morphologically intact and differentiated state over an extended period of time of up to 56 days. Results were evaluated and compared by morphological, histochemical and immunohistochemical methods. The experiments showed that short-term maintenance of cartilage in a differentiated state for up to 14 days is possible under all culture conditions tested. However, best long-term culture results for up to 56 days were obtained with perfusion culture under serum-free conditions. Such a perfusion culture system can be used to perform biocompatabilty tests in vitro by long-term coculture of biomaterial and intact human articular cartilage.


Assuntos
Materiais Biocompatíveis , Cartilagem Articular/citologia , Técnicas de Cultura de Tecidos , Adulto , Feminino , Humanos , Imuno-Histoquímica , Masculino , Inclusão em Parafina
18.
Biomed Mater Eng ; 15(1-2): 51-63, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15623930

RESUMO

In the organism epithelia perform perfect barrier functions. Strong rheological and mechanical influences constitute the normal environment of this tissue throughout life. Most epithelia are exposed to different fluids at the luminal and basal sides. To obtain realistic information about tissue development in modern biomaterial testing and tissue engineering it is necessary to mimick the natural environment of epithelia. Cultured cells are brought in contact with an artificial extracellular matrix to determine whether proper development into a functional epithelium occurs. As under natural conditions the cultures have to withstand mechanical and fluid stress over a prolonged period of time in close contact to a selected biomaterial. However, development of tissue-specific features such as polarization, tightness and transport under in vitro conditions will only occur, if the biomaterial and the culture conditions support tissue development. Leakage, edge damage and pressure differences during culture have to be avoided so that the natural functions of the growing epithelium can develop. Our aim is to generate functional epithelia derived from renal explants containing stem cells, which are microsurgically isolated and placed into specific O-ring carriers for optimal handling. The cells develop in combination with a collagenous matrix from an embryonic into a functional collecting duct (rCD) epithelium. To achieve optimal culture conditions the tissue is placed in a gradient culture container. A typical environment can be simulated by superfusing different culture media at the luminal and basal sides. Within days epithelia growing inside the gradient container build up a physiological barrier, which is maintained during the whole culture period. The described method allows to investigate the influence of new biomaterials over prolonged periods of time.


Assuntos
Técnicas de Cultura de Células/métodos , Células Epiteliais/citologia , Rim/citologia , Teste de Materiais/métodos , Células-Tronco/citologia , Engenharia Tecidual/métodos , Animais , Animais Recém-Nascidos , Técnicas de Cultura de Células/instrumentação , Diferenciação Celular/fisiologia , Proliferação de Células , Sobrevivência Celular/fisiologia , Células Cultivadas , Células Epiteliais/fisiologia , Desenho de Equipamento , Análise de Falha de Equipamento , Rim/embriologia , Rim/fisiologia , Teste de Materiais/instrumentação , Perfusão , Coelhos , Células-Tronco/fisiologia , Engenharia Tecidual/instrumentação
19.
Biomaterials ; 23(3): 805-15, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11771700

RESUMO

The majority of epithelia in our organism perform barrier functions on being exposed to different fluids at the luminal and basal sides. To simulate this natural situation under in vitro conditions for biomaterial testing and tissue engineering the epithelia have to withstand mechanical and fluid stress over a prolonged period of time. Leakage, edge damage and pressure differences in the culture system have to be avoided so that the epithelial barrier function is maintained. Besides, the environmental influences on important cell biological features such as, sealing or transport functions, have to remain upregulated and a loss of characteristics by dedifferentiation is prevented. Our aim is to expose embryonic renal collecting duct (CD) epithelia as model tissue for 14 days to fluid gradients and to monitor the development of tissue-specific features. For these experiments, cultured embryonic epithelia are placed in tissue carriers and in gradient containers, where different media are superfused at the luminal and basal sides. Epithelia growing on the tissue carriers act as a physiological barrier during the whole culture period. To avoid mechanical damage of the tissue and to suppress fluid pressure differences between the luminal and basal compartments improved transport of the medium and an elimination of unilaterally accumulated gas bubbles in the gradient container compartments by newly developed gas expander modules is introduced. By the application of these tools the yield of embryonic renal collecting duct epithelia with intact barrier function on a fragile natural support material could be increased significantly as compared to earlier experiments. Epithelia treated with a luminal NaCl load ranging from 3 to 24 mmol l were analyzed by immunohistochemical methods to determine the degree of differentiation. The tissue showed an upregulation of individual CD cell features as compared to embryonic epithelia in the neonatal kidney.


Assuntos
Células Epiteliais/citologia , Animais , Materiais Biocompatíveis , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Células Cultivadas , Córtex Cerebral/citologia , Meios de Cultura Livres de Soro , Células Epiteliais/fisiologia , Gases/metabolismo , Teste de Materiais , Perfusão/métodos , Coelhos
20.
Tissue Eng ; 8(1): 37-42, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11886652

RESUMO

The efficiency of cell or tissue cultures is usually judged by how quickly confluence is reached within a Petri dish or on a scaffold. Growth factors and fetal bovine serum are employed to drive cultured cells from one mitosis to the next as quickly as possible. The tissue specific interphase is extremely short under these conditions, so that the degree of differentiation desired in tissue engineering cannot be achieved. To reach the goal of functional differentiation in vitro mitosis and interphase must be separated experimentally and tailored to the specific requirements of the cell-type used. This could be achieved by a three step concept for tissue-engineering in vitro as we present here. The expansion phase is followed by a phase in which tissue differentiation is initiated. The final phase serves to express and maintain histotypical differentiation of the generated tissue.


Assuntos
Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Engenharia Tecidual , Animais , Células Cultivadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA