Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499418

RESUMO

Mycothiol (MSH), the major cellular thiol in Mycobacterium tuberculosis (Mtb), plays an essential role in the resistance of Mtb to various antibiotics and oxidative stresses. MshC catalyzes the ATP-dependent ligation of 1-O-(2-amino-2-deoxy-α-d-glucopyranosyl)-d-myo-inositol (GlcN-Ins) with l-cysteine (l-Cys) to form l-Cys-GlcN-Ins, the penultimate step in MSH biosynthesis. The inhibition of MshC is lethal to Mtb. In the present study, five new cysteinyl-sulfonamides were synthesized, and their binding affinity with MshC was evaluated using a thermal shift assay. Two of them bind the target with EC50 values of 219 and 231 µM. Crystal structures of full-length MshC in complex with these two compounds showed that they were bound in the catalytic site of MshC, inducing dramatic conformational changes of the catalytic site compared to the apo form. In particular, the observed closure of the KMSKS loop was not detected in the published cysteinyl-sulfamoyl adenosine-bound structure, the latter likely due to trypsin treatment. Despite the confirmed binding to MshC, the compounds did not suppress Mtb culture growth, which might be explained by the lack of adequate cellular uptake. Taken together, these novel cysteinyl-sulfonamide MshC inhibitors and newly reported full-length apo and ligand-bound MshC structures provide a promising starting point for the further development of novel anti-tubercular drugs targeting MshC.


Assuntos
Ligases , Mycobacterium tuberculosis , Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Glicopeptídeos/química , Inositol/metabolismo , Ligases/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Sulfonamidas/farmacologia
2.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540702

RESUMO

Plasminogen activator inhibitor-1 (PAI-1), a key regulator of the fibrinolytic system, is the main physiological inhibitor of plasminogen activators. By interacting with matrix components, including vitronectin (Vn), PAI-1 plays a regulatory role in tissue remodeling, cell migration, and intracellular signaling. Emerging evidence points to a role for PAI-1 in various pathological conditions, including cardiovascular diseases, cancer, and fibrosis. Targeting PAI-1 is therefore a promising therapeutic strategy in PAI-1-related pathologies. A class of small molecule inhibitors including TM5441 and TM5484, designed to bind the cleft in the central ß-sheet A of PAI-1, showed to be potent PAI-1 inhibitors in vivo. However, their binding site has not yet been confirmed. Here, we report two X-ray crystallographic structures of PAI-1 in complex with TM5484. The structures revealed a binding site at the flexible joint region, which is distinct from the presumed binding site. Based on the structural analysis and biochemical data we propose a mechanism for the observed dose-dependent two-step mechanism of PAI-1 inhibition. By binding to the flexible joint region in PAI-1, TM5484 might restrict the structural flexibility of this region, thereby inducing a substrate form of PAI-1 followed by a conversion to an inert form.


Assuntos
Inibidor 1 de Ativador de Plasminogênio/efeitos dos fármacos , Sítios de Ligação , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Inibidor 1 de Ativador de Plasminogênio/química , Conformação Proteica , Relação Estrutura-Atividade
3.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360555

RESUMO

Human cytosolic prolyl-tRNA synthetase (HcProRS) catalyses the formation of the prolyl-tRNAPro, playing an important role in protein synthesis. Inhibition of HcProRS activity has been shown to have potential benefits in the treatment of fibrosis, autoimmune diseases and cancer. Recently, potent pyrazinamide-based inhibitors were identified by a high-throughput screening (HTS) method, but no further elaboration was reported. The pyrazinamide core is a bioactive fragment found in numerous clinically validated drugs and has been subjected to various modifications. Therefore, we applied a virtual screening protocol to our in-house library of pyrazinamide-containing small molecules, searching for potential novel HcProRS inhibitors. We identified a series of 3-benzylaminopyrazine-2-carboxamide derivatives as positive hits. Five of them were confirmed by a thermal shift assay (TSA) with the best compounds 3b and 3c showing EC50 values of 3.77 and 7.34 µM, respectively, in the presence of 1 mM of proline (Pro) and 3.45 µM enzyme concentration. Co-crystal structures of HcProRS in complex with these compounds and Pro confirmed the initial docking studies and show how the Pro facilitates binding of the ligands that compete with ATP substrate. Modelling 3b into other human class II aminoacyl-tRNA synthetases (aaRSs) indicated that the subtle differences in the ATP binding site of these enzymes likely contribute to its potential selective binding of HcProRS. Taken together, this study successfully identified novel HcProRS binders from our anti-tuberculosis in-house compound library, displaying opportunities for repurposing old drug candidates for new applications such as therapeutics in HcProRS-related diseases.


Assuntos
Trifosfato de Adenosina/metabolismo , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Bioensaio/métodos , Simulação por Computador , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Pirazinamida/química , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/isolamento & purificação , Humanos , Ligantes , Modelos Moleculares , Conformação Proteica
4.
J Struct Biol ; 209(1): 107404, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31610238

RESUMO

The assembly of intermediate filaments (IFs) including nuclear lamins is driven by specific interactions of the elementary coiled-coil dimers in both lateral and longitudinal direction. The assembly mode A11 is dependent on lateral tetramerization of the second coiled-coil segment (coil1b) in antiparallel fashion. Recent cryo-electron microscopy studies pointed to 3.5 nm lamin filaments built from two antiparallel threads of longitudinally associated dimers but little molecular detail is available to date. Here we present the 2.6 Šresolution X-ray structure of a lamin A fragment including residues 65-222 which reveals the molecular basis of the A11 interaction. The crystal structure also indicates a continuous α-helical structure for the preceding linker L1 region. The middle part of the antiparallel tetramer reveals unique interactions due to the lamin-specific 42-residue insert in coil1b. At the same time, distinct characteristics of this insert provide for the preservation of common structural principles shared with lateral coil1b tetramers of vimentin and keratin K1/K10. In addition, structural analysis suggests that the A11 interaction in lamins is somewhat weaker than in cytoplasmic IFs, despite a 30% longer overlap. Establishing the structural detail of the A11 interaction across IF types is the first step towards a rational understanding of the IF assembly process which is indispensable for establishing the mechanism of disease-related mutations.


Assuntos
Citoesqueleto/genética , Filamentos Intermediários/genética , Lâmina Nuclear/ultraestrutura , Conformação Proteica , Sequência de Aminoácidos/genética , Cristalografia por Raios X , Citoesqueleto/química , Humanos , Laminas/química , Laminas/genética , Laminas/ultraestrutura , Lâmina Nuclear/genética , Conformação Proteica em alfa-Hélice , Domínios Proteicos/genética , Multimerização Proteica/genética , Vimentina
5.
Exp Eye Res ; 197: 108091, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32533979

RESUMO

Physico-chemical properties of three cataract-associated missense mutants of αB-crystallin (HspB5) (R11H, P20S, R56W) were analyzed. The oligomers formed by the R11H mutant were smaller, whereas the oligomers of the P20S and R56W mutants were larger than those of the wild-type protein. The P20S mutant possessed lower thermal stability than the wild-type HspB5 or two other HspB5 mutants. All HspB5 mutants were able to form heterooligomeric complexes with αA-crystallin (HspB4), a genuine component of eye lens. However, the P20S and R56W mutants were less effective in the formation of these complexes and properties of heterooligomeric complexes formed by these mutants and HspB4 and analyzed by ion-exchange chromatography were different from those formed by the wild-type HspB5 and HspB4. All HspB5 variants also heterooligomerized with another partner protein, HspB6. Specifically for the P20S mutant forming two distinct sizes of homooligomers, only the smaller homooligomer population was able to interact with HspB6. P20S and R56W mutants possessed lower chaperone-like activity than the wild-type HspB5 when UV-irradiated ßL-crystallin was used as a model substrate. Importantly, all three mutations are localized in three earlier postulated short α-helical regions present in the N-terminal domain of αB-crystallin. These observations suggest an important structural and functional role of these regions. Correspondingly, therein localized mutations ultimately result in clinically relevant cataracts.


Assuntos
Catarata/genética , DNA/genética , Mutação , Cadeia B de alfa-Cristalina/genética , Catarata/metabolismo , Análise Mutacional de DNA , Humanos , Cadeia B de alfa-Cristalina/metabolismo
6.
Bioorg Med Chem ; 28(17): 115645, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32773091

RESUMO

Despite of proven efficacy and well tolerability, albomycin is not used clinically due to scarcity of material. Several attempts have been made to increase the production of albomycin by chemical or biochemical methods. In the current study, we have synthesized the active moiety of albomycin δ1 and investigated its binding mode to its molecular target seryl-trna synthetase (SerRS). In addition, isoleucyl and aspartyl congeners were prepared to investigate whether the albomycin scaffold can be extrapolated to target other aminoacyl-tRNA synthetases (aaRSs) from both class I and class II aaRSs, respectively. The synthesized analogues were evaluated for their ability to inhibit the corresponding aaRSs by an in vitro aminoacylation experiment using purified enzymes. It was observed that the diastereomer having the 5'S, 6'R-configuration (nucleoside numbering) as observed in the crystal structure, exhibits excellent inhibitory activity in contrast to poor activity of its companion 5'R,6'S-diasteromer obtained as byproduct during synthesis. Moreover, the albomycin core scaffold seems well tolerated for class II aaRSs inhibition compared with class I aaRSs. To understand this bias, we studied X-ray crystal structures of SerRS in complex with the albomycin δ1 core structure 14a, and AspRS in complex with compound 16a. Structural analysis clearly showed that diastereomer selectivity is attributed to the steric restraints of the active site of SerRS and AspRS.


Assuntos
Inibidores Enzimáticos/síntese química , Ferricromo/análogos & derivados , Serina-tRNA Ligase/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Ferricromo/síntese química , Ferricromo/química , Ferricromo/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Serina-tRNA Ligase/antagonistas & inibidores , Trypanosoma brucei brucei/enzimologia
7.
Bioorg Med Chem ; 28(15): 115580, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32631562

RESUMO

Antimicrobial resistance is considered as one of the major threats for the near future as the lack of effective treatments for various infections would cause more deaths than cancer by 2050. The development of new antibacterial drugs is considered as one of the cornerstones to tackle this problem. Aminoacyl-tRNA synthetases (aaRSs) are regarded as good targets to establish new therapies. Apart from being essential for cell viability, they are clinically validated. Indeed, mupirocin, an isoleucyl-tRNA synthetase (IleRS) inhibitor, is already commercially available as a topical treatment for MRSA infections. Unfortunately, resistance developed soon after its introduction on the market, hampering its clinical use. Therefore, there is an urgent need for new cellular targets or improved therapies. Follow-up research by Cubist Pharmaceuticals led to a series of selective and in vivo active aminoacyl-sulfamoyl aryltetrazole inhibitors targeting IleRS (e.g. CB 168). Here, we describe the synthesis of new IleRS and TyrRS inhibitors based on the Cubist Pharmaceuticals compounds, whereby the central ribose was substituted for a tetrahydropyran ring. Various linkers were evaluated connecting the six-membered ring with the base-mimicking part of the synthesized analogues. Out of eight novel molecules, a three-atom spacer to the phenyltriazole moiety, which was established using azide-alkyne click chemistry, appeared to be the optimized linker to inhibit IleRS. However, 11 (Ki,app = 88 ± 5.3 nM) and 36a (Ki,app = 114 ± 13.5 nM) did not reach the same level of inhibitory activity as for the known high-affinity natural adenylate-intermediate analogue isoleucyl-sulfamoyl adenosine (IleSA, CB 138; Ki,app = 1.9 ± 4.0 nM) and CB 168, which exhibit a comparable inhibitory activity as the native ligand. Therefore, 11 was docked into the active site of IleRS using a known crystal structure of T. thermophilus in complex with mupirocin. Here, we observed the loss of the crucial 3'- and 4'- hydroxyl group interactions with the target enzyme compared to CB 168 and mupirocin, which we suggest to be the reason for the limited decrease in enzyme affinity. Despite the lack of antibacterial activity, we believe that structurally optimizing these novel analogues via a structure-based approach could ultimately result in aaRS inhibitors which would help to tackle the antibiotic resistance problem.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Isoleucina-tRNA Ligase/antagonistas & inibidores , Ácidos Sulfônicos/farmacologia , Triazóis/farmacologia , Tirosina-tRNA Ligase/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Candida/efeitos dos fármacos , Domínio Catalítico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Escherichia coli/efeitos dos fármacos , Isoleucina-tRNA Ligase/química , Isoleucina-tRNA Ligase/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Ligação Proteica , Staphylococcus aureus/efeitos dos fármacos , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/metabolismo , Thermus thermophilus/enzimologia , Triazóis/síntese química , Triazóis/metabolismo , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/metabolismo
8.
Int J Mol Sci ; 21(16)2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824134

RESUMO

Plasminogen activator inhibitor-1 (PAI-1) is the main physiological inhibitor of tissue-type (tPA) and urokinase-type (uPA) plasminogen activators (PAs). Apart from being critically involved in fibrinolysis and wound healing, emerging evidence indicates that PAI-1 plays an important role in many diseases, including cardiovascular disease, tissue fibrosis, and cancer. Targeting PAI-1 is therefore a promising therapeutic strategy in PAI-1 related pathologies. Despite ongoing efforts no PAI-1 inhibitors were approved to date for therapeutic use in humans. A better understanding of the molecular mechanisms of PAI-1 inhibition is therefore necessary to guide the rational design of PAI-1 modulators. Here, we present a 1.9 Å crystal structure of PAI-1 in complex with an inhibitory nanobody VHH-s-a93 (Nb93). Structural analysis in combination with biochemical characterization reveals that Nb93 directly interferes with PAI-1/PA complex formation and stabilizes the active conformation of the PAI-1 molecule.


Assuntos
Simulação de Acoplamento Molecular , Inibidor 1 de Ativador de Plasminogênio/química , Anticorpos de Domínio Único/química , Sítios de Ligação , Humanos , Inibidor 1 de Ativador de Plasminogênio/imunologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ligação Proteica , Estabilidade Proteica , Anticorpos de Domínio Único/imunologia
9.
Int J Mol Sci ; 21(12)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549212

RESUMO

Ubiquitously expressed human small heat shock proteins (sHsps) HspB1, HspB5, HspB6 and HspB8 contain a conserved motif (S/G)RLFD in their N-terminal domain. For each of them, we prepared mutants with a replacement of the conserved R by A (R/A mutants) and a complete deletion of the pentapeptide (Δ mutants) and analyzed their heterooligomerization with other wild-type (WT) human sHsps. We found that WT HspB1 and HspB5 formed heterooligomers with HspB6 only upon heating. In contrast, both HspB1 mutants interacted with WT HspB6 even at low temperature. HspB1/HspB6 heterooligomers revealed a broad size distribution with equimolar ratio suggestive of heterodimers as building blocks, while HspB5/HspB6 heterooligomers had an approximate 2:1 ratio. In contrast, R/A or Δ mutants of HspB6, when mixed with either HspB1 or HspB5, resulted in heterooligomers with a highly variable molar ratio and a decreased HspB6 incorporation. No heterooligomerization of HspB8 or its mutants with either HspB1 or HspB5 could be detected. Finally, R/A or Δ mutations had no effect on heterooligomerization of HspB1 and HspB5 as analyzed by ion exchange chromatography. We conclude that the conserved N-terminal motif plays an important role in heterooligomer formation, as especially pronounced in HspB6 lacking the C-terminal IXI motif.


Assuntos
Proteínas de Choque Térmico Pequenas/química , Proteínas de Choque Térmico Pequenas/metabolismo , Motivos de Aminoácidos , Cromatografia em Gel , Proteínas de Choque Térmico Pequenas/genética , Humanos , Mutação , Domínios Proteicos , Multimerização Proteica
10.
Molecules ; 25(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081246

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) have become viable targets for the development of antimicrobial agents due to their crucial role in protein translation. A series of six amino acids were coupled to the purine-like 7-amino-5-hydroxymethylbenzimidazole nucleoside analogue following an optimized synthetic pathway. These compounds were designed as aaRS inhibitors and can be considered as 1,3-dideazaadenine analogues carrying a 2-hydroxymethyl substituent. Despite our intentions to obtain N1-glycosylated 4-aminobenzimidazole congeners, resembling the natural purine nucleosides glycosylated at the N9-position, we obtained the N3-glycosylated benzimidazole derivatives as the major products, resembling the respective purine N7-glycosylated nucleosides. A series of X-ray crystal structures of class I and II aaRSs in complex with newly synthesized compounds revealed interesting interactions of these "base-flipped" analogues with their targets. While the exocyclic amine of the flipped base mimics the reciprocal interaction of the N3-purine atom of aminoacyl-sulfamoyl adenosine (aaSA) congeners, the hydroxymethyl substituent of the flipped base apparently loses part of the standard interactions of the adenine N1 and the N6-amine as seen with aaSA analogues. Upon the evaluation of the inhibitory potency of the newly obtained analogues, nanomolar inhibitory activities were noted for the leucine and isoleucine analogues targeting class I aaRS enzymes, while rather weak inhibitory activity against the corresponding class II aaRSs was observed. This class bias could be further explained by detailed structural analysis.


Assuntos
Aminoacil-tRNA Sintetases/ultraestrutura , Benzimidazóis/química , Inibidores Enzimáticos/síntese química , Ribonucleosídeos/química , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Aminoacil-tRNA Sintetases/química , Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/patogenicidade , Conformação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade
11.
J Biol Chem ; 293(28): 11154-11165, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29794027

RESUMO

Pro-Pro endopeptidases (PPEPs) belong to a recently discovered family of proteases capable of hydrolyzing a Pro-Pro bond. The first member from the bacterial pathogen Clostridium difficile (PPEP-1) cleaves two C. difficile cell-surface proteins involved in adhesion, one of which is encoded by the gene adjacent to the ppep-1 gene. However, related PPEPs may exist in other bacteria and may shed light on substrate specificity in this enzyme family. Here, we report on the homolog of PPEP-1 in Paenibacillus alvei, which we denoted PPEP-2. We found that PPEP-2 is a secreted metalloprotease, which likewise cleaved a cell-surface protein encoded by an adjacent gene. However, the cleavage motif of PPEP-2, PLP↓PVP, is distinct from that of PPEP-1 (VNP↓PVP). As a result, an optimal substrate peptide for PPEP-2 was not cleaved by PPEP-1 and vice versa. To gain insight into the specificity mechanism of PPEP-2, we determined its crystal structure at 1.75 Å resolution and further confirmed the structure in solution using small-angle X-ray scattering (SAXS). We show that a four-amino-acid loop, which is distinct in PPEP-1 and -2 (GGST in PPEP-1 and SERV in PPEP-2), plays a crucial role in substrate specificity. A PPEP-2 variant, in which the four loop residues had been swapped for those from PPEP-1, displayed a shift in substrate specificity toward PPEP-1 substrates. Our results provide detailed insights into the PPEP-2 structure and the structural determinants of substrate specificity in this new family of PPEP proteases.


Assuntos
Proteínas de Bactérias/metabolismo , Dipeptídeos/metabolismo , Endopeptidases/metabolismo , Paenibacillus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Cristalografia por Raios X , Dipeptídeos/química , Endopeptidases/química , Modelos Moleculares , Paenibacillus/crescimento & desenvolvimento , Conformação Proteica , Homologia de Sequência , Especificidade por Substrato
12.
Bioinformatics ; 34(2): 215-222, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28968723

RESUMO

MOTIVATION: Accurate molecular structure of the protein dimer representing the elementary building block of intermediate filaments (IFs) is essential towards the understanding of the filament assembly, rationalizing their mechanical properties and explaining the effect of disease-related IF mutations. The dimer contains a ∼300-residue long α-helical coiled coil which cannot be assessed by either direct experimental structure determination or modelling using standard approaches. At the same time, coiled coils are well-represented in structural databases. RESULTS: Here we present CCFold, a generally applicable threading-based algorithm which produces coiled-coil models from protein sequence only. The algorithm is based on a statistical analysis of experimentally determined structures and can handle any hydrophobic repeat patterns in addition to the most common heptads. We demonstrate that CCFold outperforms general-purpose computational folding in terms of accuracy, while being faster by orders of magnitude. By combining the CCFold algorithm and Rosetta folding we generate representative dimer models for all IF protein classes. AVAILABILITY AND IMPLEMENTATION: The source code is freely available at https://github.com/biocryst/IF; a web server to run the program is at http://pharm.kuleuven.be/Biocrystallography/cc. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

13.
J Struct Biol ; 204(1): 125-129, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30003971

RESUMO

α-Helical coiled coils (CCs) represent an important, highly regular protein folding motif. To date, many thousands of CC structures have been determined experimentally. Their geometry is usually modelled by theoretical equations introduced by F. Crick that involve a predefined set of parameters. Here we have addressed the problem of efficient CC parameterization from scratch by performing a statistical evaluation of all available CC structures. The procedure is based on the principal component analysis and yields a minimal set of independent parameters that provide for the reconstruction of the complete CC structure at a required precision. The approach is successfully validated on a set of canonical parallel CC dimers. Its applications include all cases where an efficient sampling of the CC geometry is important, such as for solving the phase problem in crystallography.


Assuntos
Proteínas/química , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína
14.
J Biol Chem ; 292(24): 9944-9957, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28487364

RESUMO

Small heat-shock proteins (sHSPs) are a conserved group of molecular chaperones with important roles in cellular proteostasis. Although sHSPs are characterized by their small monomeric weight, they typically assemble into large polydisperse oligomers that vary in both size and shape but are principally composed of dimeric building blocks. These assemblies can include different sHSP orthologues, creating additional complexity that may affect chaperone activity. However, the structural and functional properties of such hetero-oligomers are poorly understood. We became interested in hetero-oligomer formation between human heat-shock protein family B (small) member 1 (HSPB1) and HSPB6, which are both highly expressed in skeletal muscle. When mixed in vitro, these two sHSPs form a polydisperse oligomer array composed solely of heterodimers, suggesting preferential association that is determined at the monomer level. Previously, we have shown that the sHSP N-terminal domains (NTDs), which have a high degree of intrinsic disorder, are essential for the biased formation. Here we employed iterative deletion mapping to elucidate how the NTD of HSPB6 influences its preferential association with HSPB1 and show that this region has multiple roles in this process. First, the highly conserved motif RLFDQXFG is necessary for subunit exchange among oligomers. Second, a site ∼20 residues downstream of this motif determines the size of the resultant hetero-oligomers. Third, a region unique to HSPB6 dictates the preferential formation of heterodimers. In conclusion, the disordered NTD of HSPB6 helps regulate the size and stability of hetero-oligomeric complexes, indicating that terminal sHSP regions define the assembly properties of these proteins.


Assuntos
Proteínas de Choque Térmico HSP20/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Modelos Moleculares , Motivos de Aminoácidos , Substituição de Aminoácidos , Sequência Conservada , Reagentes de Ligações Cruzadas/farmacologia , Dimerização , Deleção de Genes , Proteínas de Choque Térmico HSP20/química , Proteínas de Choque Térmico HSP20/genética , Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico , Humanos , Chaperonas Moleculares , Mutagênese Sítio-Dirigida , Isótopos de Nitrogênio , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Reagentes de Sulfidrila/farmacologia
15.
J Biol Chem ; 292(23): 9699-9710, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28356354

RESUMO

The karyopherin transportin SR2 (TRN-SR2, TNPO3) is responsible for shuttling specific cargoes such as serine/arginine-rich splicing factors from the cytoplasm to the nucleus. This protein plays a key role in HIV infection by facilitating the nuclear import of the pre-integration complex (PIC) that contains the viral DNA as well as several cellular and HIV proteins, including the integrase. The process of nuclear import is considered to be the bottleneck of the viral replication cycle and therefore represents a promising target for anti-HIV drug design. Previous studies have demonstrated that the direct interaction between TRN-SR2 and HIV integrase predominantly involves the catalytic core domain (CCD) and the C-terminal domain (CTD) of the integrase. We aimed at providing a detailed molecular view of this interaction through a biochemical characterization of the respective protein complex. Size-exclusion chromatography was used to characterize the interaction of TRN-SR2 with a truncated variant of the HIV-1 integrase, including both the CCD and CTD. These experiments indicate that one TRN-SR2 molecule can specifically bind one CCD-CTD dimer. Next, the regions of the solenoid-like TRN-SR2 molecule that are involved in the interaction with integrase were identified using AlphaScreen binding assays, revealing that the integrase interacts with the N-terminal half of TRN-SR2 principally through the HEAT repeats 4, 10, and 11. Combining these results with small-angle X-ray scattering data for the complex of TRN-SR2 with truncated integrase, we propose a molecular model of the complex. We speculate that nuclear import of the PIC may proceed concurrently with the normal nuclear transport.


Assuntos
Infecções por HIV , Integrase de HIV/química , HIV-1/química , Modelos Moleculares , beta Carioferinas/química , Transporte Ativo do Núcleo Celular/genética , Fármacos Anti-HIV/química , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Desenho de Fármacos , Integrase de HIV/genética , Integrase de HIV/metabolismo , HIV-1/genética , HIV-1/metabolismo , Humanos , Domínios Proteicos , Sequências Repetitivas de Aminoácidos , Difração de Raios X , beta Carioferinas/genética , beta Carioferinas/metabolismo
16.
Bioinformatics ; 33(3): 390-396, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28171609

RESUMO

Motivation: Modern algorithms for de novo prediction of protein structures typically output multiple full-length models (decoys) rather than a single solution. Subsequent clustering of such decoys is used both to gauge the success of the modelling and to decide on the most native-like conformation. At the same time, partial protein models are sufficient for some applications such as crystallographic phasing by molecular replacement (MR) in particular, provided these models represent a certain part of the target structure with reasonable accuracy. Results: Here we propose a novel clustering algorithm that natively operates in the space of partial models through an approach known as granular clustering (GC). The algorithm is based on growing local similarities found in a pool of initial decoys. We demonstrate that the resulting clusters of partial models provide a substantially more accurate structural detail on the target protein than those obtained upon a global alignment of decoys. As the result, the partial models output by our GC algorithm are also much more effective towards the MR procedure, compared to the models produced by existing software. Availability and Implementation: The source code is freely available at https://github.com/biocryst/gc Contact: sergei.strelkov@kuleuven.be Suplementary Information: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Conformação Proteica , Análise de Sequência de Proteína/métodos , Software , Algoritmos , Análise por Conglomerados
17.
Subcell Biochem ; 82: 151-170, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28101862

RESUMO

Intermediate filaments (IFs), together with microtubules and actin microfilaments, are the three main cytoskeletal components in metazoan cells. IFs are formed by a distinct protein family, which is made up of 70 members in humans. Most IF proteins are tissue- or organelle-specific, which includes lamins, the IF proteins of the nucleus. The building block of IFs is an elongated dimer, which consists of a central α-helical 'rod' domain flanked by flexible N- and C-terminal domains. The conserved rod domain is the 'signature feature' of the IF family. Bioinformatics analysis reveals that the rod domain of all IF proteins contains three α-helical segments of largely conserved length, interconnected by linkers. Moreover, there is a conserved pattern of hydrophobic repeats within each segment, which includes heptads and hendecads. This defines the presence of both left-handed and almost parallel coiled-coil regions along the rod length. Using X-ray crystallography on multiple overlapping fragments of IF proteins, the atomic structure of the nearly complete rod domain has been determined. Here, we discuss some specific challenges of this procedure, such as crystallization and diffraction data phasing by molecular replacement. Further insights into the structure of the coiled coil and the terminal domains have been obtained using electron paramagnetic resonance measurements on the full-length protein, with spin labels attached at specific positions. This atomic resolution information, as well as further interesting findings, such as the variation of the coiled-coil stability along the rod length, provide clues towards interpreting the data on IF assembly, collected by a range of methods. However, a full description of this process at the molecular level is not yet at hand.


Assuntos
Proteínas de Filamentos Intermediários/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica em alfa-Hélice
18.
Int J Mol Sci ; 19(11)2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463319

RESUMO

The flavivirus family contains several important human pathogens, such as Zika virus (ZIKV), dengue, West Nile, and Yellow Fever viruses, that collectively lead to a large, global disease burden. Currently, there are no approved medicines that can target these viruses. The sudden outbreak of ZIKV infections in 2015⁻2016 posed a serious threat to global public health. While the epidemic has receded, persistent reservoirs of ZIKV infection can cause reemergence. Here, we have used X-ray crystallography-based screening to discover two novel sites on ZIKV NS3 helicase that can bind drug-like fragments. Both sites are structurally conserved in other flaviviruses, and mechanistically significant. The binding poses of four fragments, two for each of the binding sites, were characterized at atomic precision. Site A is a surface pocket on the NS3 helicase that is vital to its interaction with NS5 polymerase and formation of the flaviviral replication complex. Site B corresponds to a flexible, yet highly conserved, allosteric site at the intersection of the three NS3 helicase domains. Saturation transfer difference nuclear magnetic resonance (NMR) experiments were additionally used to evaluate the binding strength of the fragments, revealing dissociation constants (KD) in the lower mM range. We conclude that the NS3 helicase of flaviviruses is a viable drug target. The data obtained open opportunities towards structure-based design of first-in-class anti-ZIKV compounds, as well as pan-flaviviral therapeutics.


Assuntos
Antivirais/farmacologia , RNA Helicases/química , Proteínas não Estruturais Virais/química , Zika virus/enzimologia , Antivirais/química , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Desenho de Fármacos , Modelos Moleculares , Replicação Viral , Zika virus/efeitos dos fármacos
19.
Int J Mol Sci ; 19(7)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30036999

RESUMO

Although the N-terminal domain of vertebrate small heat shock proteins (sHsp) is poorly conserved, it contains a core motif preserved in many members of the sHsp family. The role of this RLFDQxFG motif remains elusive. We analyzed the specific role of the first arginine residue of this conserved octet sequence in five human sHsps (HspB1, HspB4, HspB5, HspB6, and HspB8). Substitution of this arginine with an alanine induced changes in thermal stability and/or intrinsic fluorescence of the related HspB1 and HspB8, but yielded only modest changes in the same biophysical properties of HspB4, HspB5, and HspB6 which together belong to another clade of vertebrate sHsps. Removal of the positively charged Arg side chain resulted in destabilization of the large oligomers of HspB1 and formation of smaller size oligomers of HspB5. The mutation induced only minor changes in the structure of HspB4 and HspB6. In contrast, the mutation in HspB8 was accompanied by shifting the equilibrium from dimers towards the formation of larger oligomers. We conclude that the RLFDQxFG motif plays distinct roles in the structure of several sHsp orthologs. This role correlates with the evolutionary relationship of the respective sHsps, but ultimately, it reflects the sequence context of this motif.


Assuntos
Motivos de Aminoácidos/fisiologia , Arginina/química , Cristalinas/química , Proteínas de Choque Térmico HSP20/química , Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico Pequenas/química , Proteínas de Choque Térmico Pequenas/metabolismo , Proteínas de Choque Térmico/química , Proteínas Serina-Treonina Quinases/química , Cadeia B de alfa-Cristalina/química , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Arginina/genética , Cromatografia em Gel , Cristalinas/genética , Cristalinas/metabolismo , Proteínas de Choque Térmico HSP20/genética , Proteínas de Choque Térmico HSP20/metabolismo , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico Pequenas/genética , Humanos , Chaperonas Moleculares , Dados de Sequência Molecular , Mutação Puntual , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo
20.
Arch Biochem Biophys ; 610: 41-50, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27717639

RESUMO

Small heat shock proteins are ATP-independent molecular chaperones. Their function is to bind partially unfolded proteins under stress conditions. In vivo, members of this chaperone family are known to preferentially assemble together forming large, polydisperse heterooligomers. The exact molecular mechanisms that drive specific heteroassociation are currently unknown. Here we study the oligomers formed between human HSPB1 and HSPB6. Using small-angle X-ray scattering we could characterize two distinct heterooligomeric species present in solution. By employing native mass spectrometry we show that such assemblies are formed purely from heterodimeric building blocks, in line with earlier cross-linking studies. Crucially, a detailed analysis of truncation variants reveals that the preferential association between these two sHSPs is solely mediated by their disordered N-terminal domains.


Assuntos
Proteínas de Choque Térmico HSP20/química , Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico , Humanos , Espectrometria de Massas , Chaperonas Moleculares/química , Peso Molecular , Mutagênese , Domínios Proteicos , Multimerização Proteica , Proteínas Recombinantes/química , Espalhamento de Radiação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA