Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Commun Chem ; 6(1): 136, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400714

RESUMO

Studying inorganic/organic hybrid systems is a stepping stone towards the design of increasingly complex interfaces. A predictive understanding requires robust experimental and theoretical tools to foster trust in the obtained results. The adsorption energy is particularly challenging in this respect, since experimental methods are scarce and the results have large uncertainties even for the most widely studied systems. Here we combine temperature-programmed desorption (TPD), single-molecule atomic force microscopy (AFM), and nonlocal density-functional theory (DFT) calculations, to accurately characterize the stability of a widely studied interface consisting of perylene-tetracarboxylic dianhydride (PTCDA) molecules on Au(111). This network of methods lets us firmly establish the adsorption energy of PTCDA/Au(111) via TPD (1.74 ± 0.10 eV) and single-molecule AFM (2.00 ± 0.25 eV) experiments which agree within error bars, exemplifying how implicit replicability in a research design can benefit the investigation of complex materials properties.

3.
J Phys Condens Matter ; 29(31): 314004, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28604364

RESUMO

Spiropyrans are prototype molecular switches, which undergo a reversible photoinduced ring-opening/-closure reaction between the closed three-dimensional spiropyran (SP) and the open, planar merocyanine (MC) form. In solution the SP isomer is the thermodynamically stable form. Using high resolution electron energy loss spectroscopy, we resolve a thermally-activated irreversible ring-opening reaction of nitrospiropyran resulting in the MC form for coverages above one monolayer. Thus, the situation found in solution is reversed for the adsorbed molecules, since the MC form is more stable due to the modified energetics by the presence of the substrate. In addition, illumination with blue light (445 nm) induced also the ring-opening, while the photostimulated back-reaction could not be observed. The photoisomerization is driven by a substrate-mediated process, i.e. a charge transfer from the substrate into molecular states. The situation changes completely in the monolayer regime. Neither a thermally-assisted nor a photoinduced ring-opening reaction has been identified. We ascribe the suppression to sterical effects stabilizing the SP form due to the surface structure of Bi(1 1 4), which consists of straight atomic rows separated by rough valleys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA