Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 604(7907): 647-652, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35478239

RESUMO

Quantum phases can be classified by topological invariants, which take on discrete values capturing global information about the quantum state1-13. Over the past decades, these invariants have come to play a central role in describing matter, providing the foundation for understanding superfluids5, magnets6,7, the quantum Hall effect3,8, topological insulators9,10, Weyl semimetals11-13 and other phenomena. Here we report an unusual linking-number (knot theory) invariant associated with loops of electronic band crossings in a mirror-symmetric ferromagnet14-20. Using state-of-the-art spectroscopic methods, we directly observe three intertwined degeneracy loops in the material's three-torus, T3, bulk Brillouin zone. We find that each loop links each other loop twice. Through systematic spectroscopic investigation of this linked-loop quantum state, we explicitly draw its link diagram and conclude, in analogy with knot theory, that it exhibits the linking number (2, 2, 2), providing a direct determination of the invariant structure from the experimental data. We further predict and observe, on the surface of our samples, Seifert boundary states protected by the bulk linked loops, suggestive of a remarkable Seifert bulk-boundary correspondence. Our observation of a quantum loop link motivates the application of knot theory to the exploration of magnetic and superconducting quantum matter.

2.
Phys Rev Lett ; 132(1): 016501, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242670

RESUMO

We use resonant inelastic x-ray scattering (RIXS) at the Fe-L_{3} edge to study the spin excitations of uniaxial-strained and unstrained FeSe_{1-x}S_{x} (0≤x≤0.21) samples. The measurements on unstrained samples reveal dispersive spin excitations in all doping levels, which show only minor doping dependence in energy dispersion, lifetime, and intensity, indicating that high-energy spin excitations are only marginally affected by sulfur doping. RIXS measurements on uniaxial-strained samples reveal that the high-energy spin-excitation anisotropy observed previously in FeSe is also present in the doping range 0200 K in x=0.18 and reaches a maximum around the nematic quantum critical doping (x_{c}≈0.17). Since the spin-excitation anisotropy directly reflects the existence of nematic spin correlations, our results indicate that high-energy nematic spin correlations pervade the regime of nematicity in the phase diagram and are enhanced by the nematic quantum criticality. These results emphasize the essential role of spin fluctuations in driving electronic nematicity and highlight the capability of uniaxial strain in tuning spin excitations in quantum materials hosting strong magnetoelastic coupling and electronic nematicity.

3.
J Am Chem Soc ; 145(23): 12920-12927, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37267070

RESUMO

Magnetic interactions in combination with nontrivial band structures can give rise to several exotic physical properties such as a large anomalous Hall effect, the anomalous Nernst effect, and the topological Hall effect (THE). Antiferromagnetic (AFM) materials exhibit the THE due to the presence of nontrivial spin structures. EuCuAs crystallizes in a hexagonal structure with an AFM ground state (Néel temperature ∼ 16 K). In this work, we observe a large topological Hall resistivity of ∼7.4 µΩ-cm at 13 K which is significantly higher than the giant topological Hall effect of Gd2PdSi3 (∼3 µΩ-cm). Neutron diffraction experiments reveal that the spins form a transverse conical structure during the metamagnetic transition, resulting in the large THE. In addition, by controlling the magnetic ordering structure of EuCuAs with an external magnetic field, several fascinating topological states such as Dirac and Weyl semimetals have been revealed. These results suggest the possibility of spintronic devices based on antiferromagnets with tailored noncoplanar spin configurations.

4.
Phys Rev Lett ; 130(6): 066402, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36827563

RESUMO

Novel topological phases of matter are fruitful platforms for the discovery of unconventional electromagnetic phenomena. Higher-fold topology is one example, where the low-energy description goes beyond standard model analogs. Despite intensive experimental studies, conclusive evidence remains elusive for the multigap topological nature of higher-fold chiral fermions. In this Letter, we leverage a combination of fine-tuned chemical engineering and photoemission spectroscopy with photon energy contrast to discover the higher-fold topology of a chiral crystal. We identify all bulk branches of a higher-fold chiral fermion for the first time, critically important for allowing us to explore unique Fermi arc surface states in multiple interband gaps, which exhibit an emergent ladder structure. Through designer chemical gating of the samples in combination with our measurements, we uncover an unprecedented multigap bulk boundary correspondence. Our demonstration of multigap electronic topology will propel future research on unconventional topological responses.

5.
Proc Natl Acad Sci U S A ; 117(46): 28596-28602, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33122434

RESUMO

Interaction effects can change materials properties in intriguing ways, and they have, in general, a huge impact on electronic spectra. In particular, satellites in photoemission spectra are pure many-body effects, and their study is of increasing interest in both experiment and theory. However, the intrinsic spectral function is only a part of a measured spectrum, and it is notoriously difficult to extract this information, even for simple metals. Our joint experimental and theoretical study of the prototypical simple metal aluminum demonstrates how intrinsic satellite spectra can be extracted from measured data using angular resolution in photoemission. A nondispersing satellite is detected and explained by electron-electron interactions and the thermal motion of the atoms. Additional nondispersing intensity comes from the inelastic scattering of the outgoing photoelectron. The ideal intrinsic spectral function, instead, has satellites that disperse both in energy and in shape. Theory and the information extracted from experiment describe these features with very good agreement.

6.
Proc Natl Acad Sci U S A ; 117(40): 24764-24770, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958669

RESUMO

In the high spin-orbit-coupled Sr2IrO4, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir-O bond geometry in Sr2IrO4 and perform momentum-dependent resonant inelastic X-ray scattering (RIXS) at the metal and at the ligand sites to unveil the response of the low-energy elementary excitations. We observe that the pseudospin-wave dispersion for tensile-strained Sr2IrO4 films displays large softening along the [h,0] direction, while along the [h,h] direction it shows hardening. This evolution reveals a renormalization of the magnetic interactions caused by a strain-driven cross-over from anisotropic to isotropic interactions between the magnetic moments. Moreover, we detect dispersive electron-hole pair excitations which shift to lower (higher) energies upon compressive (tensile) strain, manifesting a reduction (increase) in the size of the charge gap. This behavior shows an intimate coupling between charge excitations and lattice distortions in Sr2IrO4, originating from the modified hopping elements between the t2g orbitals. Our work highlights the central role played by the lattice degrees of freedom in determining both the pseudospin and charge excitations of Sr2IrO4 and provides valuable information toward the control of the ground state of complex oxides in the presence of high spin-orbit coupling.

7.
J Synchrotron Radiat ; 27(Pt 5): 1235-1239, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876598

RESUMO

Upon progressive refinement of energy resolution, the conventional resonant inelastic X-ray scattering (RIXS) instrumentation reaches the limit where the bandwidth of incident photons becomes insufficient to deliver an acceptable photon-count rate. Here it is shown that RIXS spectra as a function of energy loss are essentially invariant to their integration over incident energies within the core-hole lifetime. This fact permits RIXS instrumentation based on the hv2-concept to utilize incident synchrotron radiation over the whole core-hole lifetime window without any compromise on the much finer energy-loss resolution, thereby breaking the photon-count limit.

8.
Nano Lett ; 19(11): 8311-8317, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31644875

RESUMO

Artificial complex-oxide heterostructures containing ultrathin buried layers grown along the pseudocubic [111] direction have been predicted to host a plethora of exotic quantum states arising from the graphene-like lattice geometry and the interplay between strong electronic correlations and band topology. To date, however, electronic-structural investigations of such atomic layers remain an immense challenge due to the shortcomings of conventional surface-sensitive probes with typical information depths of a few angstroms. Here, we use a combination of bulk-sensitive soft X-ray angle-resolved photoelectron spectroscopy (SX-ARPES), hard X-ray photoelectron spectroscopy (HAXPES), and state-of-the-art first-principles calculations to demonstrate a direct and robust method for extracting momentum-resolved and angle-integrated valence-band electronic structure of an ultrathin buckled graphene-like layer of NdNiO3 confined between two 4-unit cell-thick layers of insulating LaAlO3. The momentum-resolved dispersion of the buried Ni d states near the Fermi level obtained via SX-ARPES is in excellent agreement with the first-principles calculations and establishes the realization of an antiferro-orbital order in this artificial lattice. The HAXPES measurements reveal the presence of a valence-band bandgap of 265 meV. Our findings open a promising avenue for designing and investigating quantum states of matter with exotic order and topology in a few buried layers.

9.
Opt Express ; 25(14): 15624-15634, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789077

RESUMO

We have implemented and successfully tested an off-axis transmission Fresnel zone plate as a novel type of analyzer optics for resonant inelastic x-ray scattering (RIXS). We achieved a spectral resolution of 64 meV at the nitrogen K-edge (E/dE = 6200), closely matching theoretical predictions. The fundamental advantage of transmission optics is the fact that it can provide stigmatic imaging properties. This opens up a variety of advanced RIXS configurations, such as efficient scanning RIXS, parallel detection for varying incident energy and time-resolved measurements.

10.
J Synchrotron Radiat ; 22(3): 708-16, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931087

RESUMO

The concept of a multichannel electron spin detector based on optical imaging principles and Mott scattering (iMott) is presented. A multichannel electron image produced by a standard angle-resolving (photo) electron analyzer or microscope is re-imaged by an electrostatic lens at an accelerating voltage of 40 kV onto the Au target. Quasi-elastic electrons bearing spin asymmetry of the Mott scattering are imaged by magnetic lenses onto position-sensitive electron CCDs whose differential signals yield the multichannel spin asymmetry image. Fundamental advantages of this concept include acceptance of inherently divergent electron sources from the electron analyzer or microscope focal plane as well as small aberrations achieved by virtue of high accelerating voltages, as demonstrated by extensive ray-tracing analysis. The efficiency gain compared with the single-channel Mott detector can be a factor of more than 10(4) which opens new prospects of spin-resolved spectroscopies in application not only to standard bulk and surface systems (Rashba effect, topological insulators, etc.) but also to buried heterostructures. The simultaneous spin detection combined with fast CCD readout enables efficient use of the iMott detectors at X-ray free-electron laser facilities.

11.
Phys Rev Lett ; 114(9): 096402, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793832

RESUMO

Fractionalization of an electronic quasiparticle into spin, charge, and orbital parts is a fundamental and characteristic property of interacting electrons in one dimension. However, real materials are never strictly one dimensional and the fractionalization phenomena are hard to observe. Here we studied the spin and orbital excitations of the anisotropic ladder material CaCu_{2}O_{3}, whose electronic structure is not one dimensional. Combining high-resolution resonant inelastic x-ray scattering experiments with theoretical model calculations, we show that (i) spin-orbital fractionalization occurs in CaCu_{2}O_{3} along the leg direction x through the xz orbital channel as in a 1D system, and (ii) no fractionalization is observed for the xy orbital, which extends in both leg and rung direction, contrary to a 1D system. We conclude that the directional character of the orbital hopping can select different degrees of dimensionality. Using additional model calculations, we show that spin-orbital separation is generally far more robust than the spin-charge separation. This is not only due to the already mentioned selection realized by the orbital hopping, but also due to the fact that spinons are faster than the orbitons.


Assuntos
Compostos de Cálcio/química , Cobre/química , Modelos Teóricos , Óxidos/química , Anisotropia , Elétrons
12.
Phys Rev Lett ; 112(14): 147401, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24766010

RESUMO

Taking spinon excitations in the quantum antiferromagnet CaCu2O3 as an example, we demonstrate that femtosecond dynamics of magnetic electronic excitations can be probed by direct resonant inelastic x-ray scattering (RIXS). To this end, we isolate the contributions of single and double spin-flip excitations in experimental RIXS spectra, identify the physical mechanisms that cause them, and determine their respective time scales. By comparing theory and experiment, we find that double spin flips need a finite amount of time to be generated, rendering them sensitive to the core-hole lifetime, whereas single spin flips are, to a very good approximation, independent of it. This shows that RIXS can grant access to time-domain dynamics of excitations and illustrates how RIXS experiments can distinguish between excitations in correlated electron systems based on their different time dependence.

13.
Adv Mater ; 36(15): e2309217, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38245856

RESUMO

Oxide electronics provide the key concepts and materials for enhancing silicon-based semiconductor technologies with novel functionalities. However, a basic but key property of semiconductor devices still needs to be unveiled in its oxidic counterparts: the ability to set or even switch between two types of carriers-either negatively (n) charged electrons or positively (p) charged holes. Here, direct evidence for individually emerging n- or p-type 2D band dispersions in STO-based heterostructures is provided using resonant photoelectron spectroscopy. The key to tuning the carrier character is the oxidation state of an adjacent Fe-based interface layer: For Fe and FeO, hole bands emerge in the empty bandgap region of STO due to hybridization of Ti- and Fe- derived states across the interface, while for Fe3O4 overlayers, an 2D electron system is formed. Unexpected oxygen vacancy characteristics arise for the hole-type interfaces, which as of yet had been exclusively assigned to the emergence of 2DESs. In general, this finding opens up the possibility to straightforwardly switch the type of conductivity at STO interfaces by the oxidation state of a redox overlayer. This will extend the spectrum of phenomena in oxide electronics, including the realization of combined n/p-type all-oxide transistors or logic gates.

14.
Adv Mater ; : e2305916, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004883

RESUMO

A topological magnetic material showcases a multitude of intriguing properties resulting from the compelling interplay between topology and magnetism. These include notable phenomena such as a large anomalous Nernst effect (ANE), an anomalous Hall effect (AHE), and a topological Hall effect (THE). In most cases, topological transport phenomena are prevalent at temperatures considerably lower than room temperature, presenting a challenge for practical applications. However, the noncollinear ferromagnetic (FM) LaMn2Ge2, characterized by a Mn square-net lattice and a notably high Curie temperature (TC) of approximately 325 K, defies this trend as a topological semimetal. This work observes a giant topological Hall resistivity, ρ y x T $\rho _{yx}^T$ , of ≈4.5 µΩ cm at room temperature when the angle between the applied field and the c-axis is 75°, which is significantly higher than state-of-the-art materials with noncoplanar spin structures. The single crystal neutron diffraction measurements agree with an incommensurate conical magnetic structure as the ground state. This observation suggests the enhanced spin chirality resulting from the noncoplanar spin configuration when the applied field is away from the magnetic easy axis as the origin of a large contribution to the observed THE. The findings unequivocally demonstrate that the FM LaMn2Ge2 holds great promise as a potential topological semimetal for spintronic applications even at room temperature.

15.
Nat Commun ; 15(1): 2116, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459058

RESUMO

Altermagnetism represents an emergent collinear magnetic phase with compensated order and an unconventional alternating even-parity wave spin order in the non-relativistic band structure. We investigate directly this unconventional band splitting near the Fermi energy through spin-integrated soft X-ray angular resolved photoemission spectroscopy. The experimentally obtained angle-dependent photoemission intensity, acquired from epitaxial thin films of the predicted altermagnet CrSb, demonstrates robust agreement with the corresponding band structure calculations. In particular, we observe the distinctive splitting of an electronic band on a low-symmetry path in the Brilliouin zone that connects two points featuring symmetry-induced degeneracy. The measured large magnitude of the spin splitting of approximately 0.6 eV and the position of the band just below the Fermi energy underscores the significance of altermagnets for spintronics based on robust broken time reversal symmetry responses arising from exchange energy scales, akin to ferromagnets, while remaining insensitive to external magnetic fields and possessing THz dynamics, akin to antiferromagnets.

16.
Nat Commun ; 15(1): 3720, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697958

RESUMO

Spin-orbit coupling in noncentrosymmetric crystals leads to spin-momentum locking - a directional relationship between an electron's spin angular momentum and its linear momentum. Isotropic orthogonal Rashba spin-momentum locking has been studied for decades, while its counterpart, isotropic parallel Weyl spin-momentum locking has remained elusive in experiments. Theory predicts that Weyl spin-momentum locking can only be realized in structurally chiral cubic crystals in the vicinity of Kramers-Weyl or multifold fermions. Here, we use spin- and angle-resolved photoemission spectroscopy to evidence Weyl spin-momentum locking of multifold fermions in the chiral topological semimetal PtGa. We find that the electron spin of the Fermi arc surface states is orthogonal to their Fermi surface contour for momenta close to the projection of the bulk multifold fermion at the Γ point, which is consistent with Weyl spin-momentum locking of the latter. The direct measurement of the bulk spin texture of the multifold fermion at the R point also displays Weyl spin-momentum locking. The discovery of Weyl spin-momentum locking may lead to energy-efficient memory devices and Josephson diodes based on chiral topological semimetals.

17.
J Synchrotron Radiat ; 20(Pt 4): 517-21, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23765292

RESUMO

The interplay between the angle-dependent X-ray reflectivity, X-ray absorption and the photoelectron attenuation length in the photoelectron emission process determines the optimal X-ray incidence angle that maximizes the photoelectron signal. Calculations in the wide VUV to the hard X-ray energy range show that the optimal angle becomes more grazing with increasing energy, from a few tens of degrees at 50 eV to about one degree at 3.5 keV. This is accompanied by an intensity gain of a few tens of times, as long as the X-ray footprint on the sample stays within the analyzer field of view. This trend is fairly material-independent. The obtained results bear immediate implications for the design of (synchrotron-based) photoelectron spectrometers.

18.
Phys Rev Lett ; 110(8): 087403, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23473202

RESUMO

We report a high-resolution resonant inelastic soft x-ray scattering study of the quantum magnetic spin-chain materials Li(2)CuO(2) and CuGeO(3). By tuning the incoming photon energy to the oxygen K edge, a strong excitation around 3.5 eV energy loss is clearly resolved for both materials. Comparing the experimental data to many-body calculations, we identify this excitation as a Zhang-Rice singlet exciton on neighboring CuO(4) plaquettes. We demonstrate that the strong temperature dependence of the inelastic scattering related to this high-energy exciton enables us to probe short-range spin correlations on the 1 meV scale with outstanding sensitivity.

19.
Adv Sci (Weinh) ; 10(6): e2205476, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36592417

RESUMO

Pb(Zr,Ti)O3 (PZT) is the most common ferroelectric (FE) material widely used in solid-state technology. Despite intense studies of PZT over decades, its intrinsic band structure, electron energy depending on 3D momentum k, is still unknown. Here, Pb(Zr0.2 Ti0.8 )O3 using soft-X-ray angle-resolved photoelectron spectroscopy (ARPES) is explored. The enhanced photoelectron escape depth in this photon energy range allows sharp intrinsic definition of the out-of-plane momentum k and thereby of the full 3D band structure. Furthermore, the problem of sample charging due to the inherently insulating nature of PZT is solved by using thin-film PZT samples, where a thickness-induced self-doping results in their heavy doping. For the first time, the soft-X-ray ARPES experiments deliver the intrinsic 3D band structure of PZT as well as the FE-polarization dependent electrostatic potential profile across the PZT film deposited on SrTiO3 and Lax SrMn1- x O3 substrates. The negative charges near the surface, required to stabilize the FE state pointing away from the sample (P+), are identified as oxygen vacancies creating localized in-gap states below the Fermi energy. For the opposite polarization state (P-), the positive charges near the surface are identified as cation vacancies resulting from non-ideal stoichiometry of the PZT film as deduced from quantitative XPS measurements.

20.
ACS Appl Mater Interfaces ; 15(12): 16288-16298, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36940162

RESUMO

Majorana zero modes, with prospective applications in topological quantum computing, are expected to arise in superconductor/semiconductor interfaces, such as ß-Sn and InSb. However, proximity to the superconductor may also adversely affect the semiconductor's local properties. A tunnel barrier inserted at the interface could resolve this issue. We assess the wide band gap semiconductor, CdTe, as a candidate material to mediate the coupling at the lattice-matched interface between α-Sn and InSb. To this end, we use density functional theory (DFT) with Hubbard U corrections, whose values are machine-learned via Bayesian optimization (BO) [ npj Computational Materials 2020, 6, 180]. The results of DFT+U(BO) are validated against angle resolved photoemission spectroscopy (ARPES) experiments for α-Sn and CdTe. For CdTe, the z-unfolding method [ Advanced Quantum Technologies 2022, 5, 2100033] is used to resolve the contributions of different kz values to the ARPES. We then study the band offsets and the penetration depth of metal-induced gap states (MIGS) in bilayer interfaces of InSb/α-Sn, InSb/CdTe, and CdTe/α-Sn, as well as in trilayer interfaces of InSb/CdTe/α-Sn with increasing thickness of CdTe. We find that 16 atomic layers (3.5 nm) of CdTe can serve as a tunnel barrier, effectively shielding the InSb from MIGS from the α-Sn. This may guide the choice of dimensions of the CdTe barrier to mediate the coupling in semiconductor-superconductor devices in future Majorana zero modes experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA