Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38069684

RESUMO

Traditional dry cured ham (DCH) is favored by consumers for its distinctive flavor, derived from an array of volatile organic compounds (VOCs). Microbiota play a pivotal role in the formation of VOCs. To fully comprehend the pathway by which the microbiota enhance the flavor quality of DCH, it is imperative to elucidate the flavor profile of DCH, the structural and metabolic activities of the microbiota, and the intricate relationship between microbial and VOCs. Thus far, the impact of microbiota on the flavor profile of DCH has not been comprehensively discussed or reviewed, and the succession of bacteria, especially at distinct phases of processing, has not been adequately summarized. This article aims to encapsulate the considerable potential of ferments in shaping the flavor characteristics of DCH, while elucidating the underlying mechanisms through which VOCs are generated in hams via microbial metabolism. Throughout the various stages of DCH processing, the composition of microbiota undergoes dynamic changes. Furthermore, they directly participate in the formation of VOCs in DCH through the catabolism of amino acids, metabolism of fatty acids, and the breakdown of carbohydrates. Several microorganisms, including Lactobacillus, Penicillium, Debaryomyces, Pediococcus, and Staphylococcus, exhibit considerable potential as fermenters in ham production.

2.
Int J Biol Macromol ; 278(Pt 2): 134762, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151845

RESUMO

In this study, oregano essential oil (OEO)-loaded soluble soybean polysaccharide (SSPS) -nisin nanoparticles (ONSNPs) were formulated through electrostatic attraction-driven and hydrophobic interactions utilizing SSPS, nisin, and OEO as raw materials. ONSNPs were integrated into polyvinyl alcohol (PVA) and soybean protein isolate (SPI) matrices to create composite pads (PS-ONSNPs) by physically cross-linked using a simple freeze-thaw cycling process. The effects of ONSNPs content on the structure and physicochemical properties were evaluated. The results revealed that strong intermolecular interactions between ONSNPs and the PS matrices affected the crystallinity, microstructure, and thermal stability of the pads. Upon incorporating 5 % to 15 % ONSNPs, the structure of composite pads became denser, and the mechanical properties and water resistance were enhanced. Concurrently, the PS-ONSNPs pads facilitated the protection and controlled release of OEO. Furthermore, ONSNPs significantly improved the antioxidant activity of the pads and effectively inhibited the growth of Staphylococcus aureus and Escherichia coli. The prepared PS-ONSNPs 15 % pad was applied to storage experiments of fresh pork, which could extend the shelf life of meat to 10-12 days under 4 °C storage conditions. Therefore, the composite pad devised in this research holds promise as a viable option for intelligent active packaging of fresh meat.


Assuntos
Antioxidantes , Conservação de Alimentos , Nanopartículas , Álcool de Polivinil , Proteínas de Soja , Álcool de Polivinil/química , Antioxidantes/química , Antioxidantes/farmacologia , Nanopartículas/química , Animais , Proteínas de Soja/química , Conservação de Alimentos/métodos , Suínos , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Nisina/química , Nisina/farmacologia , Carne de Porco , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA