Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 85(9): 2761-2771, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35576267

RESUMO

About one third of the industrial activated sludge (AS) plants worldwide suffer from bad settling sludge, often caused by filamentous bulking phenomena. The present study investigated the effectiveness of a sludge granulation/densification strategy, based only on a metabolic selection mechanism, to eliminate sludge bulking in a sequencing batch reactor (SBR) treating real industrial wastewater. The wastewater originated from a tank truck cleaning company transporting chocolate and beer. The proposed strategy involved the introduction of a slow unaerated/anaerobic feeding step in the SBR operation. On lab-scale, the new feeding strategy resulted in (1) excellent settling with a sludge volume index (SVI) decreasing from more than 300 mL·g-1 to 100 mL·g-1 and lower, (2) the elimination of sludge bulking genera and (3) the significant enrichment of glycogen-accumulating organisms (GAO), mainly Defluviicoccus and Candidatus Competibacter, and this in less than 80 days. The feeding strategy was then applied to the full-scale installation, yielding similar results: a stable average SVI of 37 mL·g-1 was reached after approximately 150 days. Full granulation was however not reached, which warrants further optimization. The present study shows that the proposed strategy can easily be applied in existing SBR systems to solve the problem of sludge bulking.


Assuntos
Esgotos , Águas Residuárias , Reatores Biológicos , Glicogênio , Eliminação de Resíduos Líquidos/métodos
2.
RSC Adv ; 9(15): 8546-8556, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35518659

RESUMO

This work aims at the separation of n-butanol from aqueous solutions by means of pervaporation using membranes based on gelled ionic liquids (IL). These membranes were mechanically stabilized with a double silicone coating using two polydimethylsiloxane (PDMS) films. The first step of the membrane preparation considered the formation of a gelled ionic liquid layer, which was formed using two different imidazolium-based ionic liquids: [omim][Tf2N] and [bmim][Tf2N], and two different phosphonium-based ionic liquids: [P6,6,6,14][Tf2N] and [P6,6,6,14][DCA]. The gelation procedure was carried out on a porous paper support using a low molecular weight gelator. The membranes obtained from this method were tested in pervaporation assays to separate butanol from model ABE (Acetone-Butanol-Ethanol) fermentation solutions. These assays were done in an experimental setup especially built for this purpose. The pervaporation performance of these ionic liquid-based membranes was compared to that obtained with a single PDMS layer membrane. From these experimental results, butanol/water selectivity for [P6,6,6,14][Tf2N]-based membranes reached a value equal to 892, which is 150 times higher than the value obtained for a single PDMS layer membrane. Simultaneously, for the same IL, the transmembrane fluxes (kg h-1 m-2) of butanol and water were 37% and 99.6% lower than the values obtained using a single PDMS layer membrane, respectively. The hydrophobic character of the selected ionic liquid and its relatively high values for the transport parameters can explain this experimental response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA