Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Oral Pathol Med ; 50(5): 459-469, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33369783

RESUMO

BACKGROUND: Tobacco consumption in smoking and non-smoking forms has been consequential in the rise of oral cancer cases. Among different forms, epidemiological studies from Middle Eastern countries and rural parts of northern India have reported increasing association of oral cancer with waterpipe (hookah) smoking. However, molecular mechanisms and role played by waterpipe smoking in the onset of oral carcinogenesis remains unexplored. METHODS: In this study, immortalized normal human oral keratinocytes were chronically treated with extracts of two varieties of waterpipe tobacco-crude tobacco and processed shisha. Phenotypic changes and molecular aberrations were examined using cell culture-based assays and mass spectrometry-based quantitative proteomic analysis, respectively. Bioinformatics analysis was utilized to analyze proteomics data and identify dysregulated pathways. RESULTS: Our data indicate that chronic treatment with waterpipe tobacco extracts increased proliferation, invasion, migration, and significant dysregulation of protein expression in oral keratinocytes. Altered expression of proteins involved in interferon signaling pathway were observed with both varieties of tobacco. Overexpression of cholesterol metabolism and vesicle-mediated transport proteins were identified exclusively in cells treated with crude tobacco extract. Bioinformatics analyses revealed different oncogenic response in oral cells based on the type of waterpipe tobacco used. CONCLUSIONS: This study may serve as a useful resource in understanding the early onset of oral cancer attributed to waterpipe smoking.


Assuntos
Cachimbos de Água , Humanos , Índia , Queratinócitos , Extratos Vegetais/farmacologia , Proteômica , Nicotiana , Uso de Tabaco
2.
Gastric Cancer ; 23(5): 796-810, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32333232

RESUMO

BACKGROUND: Phosphorylation is an important regulatory mechanism of protein activity in cells. Studies in various cancers have reported perturbations in kinases resulting in aberrant phosphorylation of oncoproteins and tumor suppressor proteins. METHODS: In this study, we carried out quantitative phosphoproteomic analysis of gastric cancer tissues and corresponding xenograft samples. Using these data, we employed bioinformatics analysis to identify aberrant signaling pathways. We further performed molecular inhibition and silencing of the upstream regulatory kinase in gastric cancer cell lines and validated its effect on cellular phenotype. Through an ex vivo technology utilizing patient tumor and blood sample, we sought to understand the therapeutic potential of the kinase by recreating the tumor microenvironment. RESULTS: Using mass spectrometry-based high-throughput analysis, we identified 1,344 phosphosites and 848 phosphoproteins, including differential phosphorylation of 177 proteins (fold change cut-off ≥ 1.5). Our data showed that a subset of differentially phosphorylated proteins belonged to splicing machinery. Pathway analysis highlighted Cdc2-like kinase (CLK1) as upstream kinase. Inhibition of CLK1 using TG003 and CLK1 siRNA resulted in a decreased cell viability, proliferation, invasion and migration as well as modulation in the phosphorylation of SRSF2. Ex vivo experiments which utilizes patient's own tumor and blood to recreate the tumor microenvironment validated the use of CLK1 as a potential target for gastric cancer treatment. CONCLUSIONS: Our data indicates that CLK1 plays a crucial role in the regulation of splicing process in gastric cancer and that CLK1 can act as a novel therapeutic target in gastric cancer.


Assuntos
Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteoma/metabolismo , Neoplasias Gástricas/patologia , Animais , Apoptose , Biomarcadores Tumorais , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos SCID , Invasividade Neoplásica , Fosforilação , Prognóstico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteoma/análise , RNA Interferente Pequeno/genética , Neoplasias Gástricas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nature ; 509(7502): 575-81, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24870542

RESUMO

The availability of human genome sequence has transformed biomedical research over the past decade. However, an equivalent map for the human proteome with direct measurements of proteins and peptides does not exist yet. Here we present a draft map of the human proteome using high-resolution Fourier-transform mass spectrometry. In-depth proteomic profiling of 30 histologically normal human samples, including 17 adult tissues, 7 fetal tissues and 6 purified primary haematopoietic cells, resulted in identification of proteins encoded by 17,294 genes accounting for approximately 84% of the total annotated protein-coding genes in humans. A unique and comprehensive strategy for proteogenomic analysis enabled us to discover a number of novel protein-coding regions, which includes translated pseudogenes, non-coding RNAs and upstream open reading frames. This large human proteome catalogue (available as an interactive web-based resource at http://www.humanproteomemap.org) will complement available human genome and transcriptome data to accelerate biomedical research in health and disease.


Assuntos
Proteoma/metabolismo , Proteômica , Adulto , Células Cultivadas , Bases de Dados de Proteínas , Feto/metabolismo , Análise de Fourier , Perfilação da Expressão Gênica , Genoma Humano/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Internet , Espectrometria de Massas , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Especificidade de Órgãos , Biossíntese de Proteínas , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteoma/análise , Proteoma/química , Proteoma/genética , Pseudogenes/genética , RNA não Traduzido/genética , Reprodutibilidade dos Testes , Regiões não Traduzidas/genética
4.
J Oral Pathol Med ; 48(4): 284-289, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30659648

RESUMO

BACKGROUND: Tobacco is smoked in different form including cigarettes and water pipes. One popular form of water pipe smoking especially in Middle Eastern countries is shisha smoking. Shisha has been associated with various diseases including oral cancer. However, genomic alterations and gene expression changes associated with chronic shisha exposure have not been previously investigated. OBJECTIVES: Whole-exome sequencing and gene expression profiling of immortalized human oral keratinocytes (OKF6/TERT1) cells chronically treated with 0.5% shisha extract for a period of 8 months was undertaken to characterize molecular alterations associated with shisha exposure. METHODS: Genomic DNA and RNA were extracted and preprocessed as per manufacturer's instruction and subjected to whole-exome and transcriptome sequencing using Illumina HiSeq2500 platform. Exome was analyzed using GATK pipeline whereas RNA-Seq data was analyzed using HiSat2 and HTSeq along with DESeq to elucidate differentially expressed genes. RESULTS: Whole-exome sequence analysis led to identification of 521 somatic missense variants corresponding to 389 genes RNA-Seq data revealed 247 differentially expressed genes (≥2-fold, P-value<0.01) in shisha treated cells compared to parental cells. Pathway analysis of differentially expressed genes revealed that interferon-signaling pathway was significantly affected. We predict activation of MAPK1 pathway which is known to play a key role in oral cancer. We also observed allele specific expression of mutant LIMA1 based on RNA-Seq dataset. CONCLUSION: Our findings provide insights into genomic alterations and gene expression pattern associated with oral keratinocytes chronically exposed to shisha.


Assuntos
Queratinócitos , Neoplasias Bucais/diagnóstico , Fumar Cachimbo de Água/efeitos adversos , Células Cultivadas , Proteínas do Citoesqueleto/genética , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , RNA-Seq , Nicotiana , Transcriptoma , Sequenciamento do Exoma
5.
Mol Cell Proteomics ; 13(11): 3184-98, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25060758

RESUMO

Accurate annotation of protein-coding genes is one of the primary tasks upon the completion of whole genome sequencing of any organism. In this study, we used an integrated transcriptomic and proteomic strategy to validate and improve the existing zebrafish genome annotation. We undertook high-resolution mass-spectrometry-based proteomic profiling of 10 adult organs, whole adult fish body, and two developmental stages of zebrafish (SAT line), in addition to transcriptomic profiling of six organs. More than 7,000 proteins were identified from proteomic analyses, and ∼ 69,000 high-confidence transcripts were assembled from the RNA sequencing data. Approximately 15% of the transcripts mapped to intergenic regions, the majority of which are likely long non-coding RNAs. These high-quality transcriptomic and proteomic data were used to manually reannotate the zebrafish genome. We report the identification of 157 novel protein-coding genes. In addition, our data led to modification of existing gene structures including novel exons, changes in exon coordinates, changes in frame of translation, translation in annotated UTRs, and joining of genes. Finally, we discovered four instances of genome assembly errors that were supported by both proteomic and transcriptomic data. Our study shows how an integrative analysis of the transcriptome and the proteome can extend our understanding of even well-annotated genomes.


Assuntos
Genoma/genética , Proteoma/análise , Proteoma/genética , Transcriptoma/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Espectrometria de Massas , Anotação de Sequência Molecular , Proteômica , Análise de Sequência de RNA
6.
BMC Cancer ; 15: 843, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26530123

RESUMO

BACKGROUND: Poor prognosis in gallbladder cancer is due to late presentation of the disease, lack of reliable biomarkers for early diagnosis and limited targeted therapies. Early diagnostic markers and novel therapeutic targets can significantly improve clinical management of gallbladder cancer. METHODS: Proteomic analysis of four gallbladder cancer cell lines based on the invasive property (non-invasive to highly invasive) was carried out using the isobaric tags for relative and absolute quantitation labeling-based quantitative proteomic approach. The expression of macrophage migration inhibitory factor was analysed in gallbladder adenocarcinoma tissues using immunohistochemistry. In vitro cellular assays were carried out in a panel of gallbladder cancer cell lines using MIF inhibitors, ISO-1 and 4-IPP or its specific siRNA. RESULTS: The quantitative proteomic experiment led to the identification of 3,653 proteins, among which 654 were found to be overexpressed and 387 were downregulated in the invasive cell lines (OCUG-1, NOZ and GB-d1) compared to the non-invasive cell line, TGBC24TKB. Among these, macrophage migration inhibitory factor (MIF) was observed to be highly overexpressed in two of the invasive cell lines. MIF is a pleiotropic proinflammatory cytokine that plays a causative role in multiple diseases, including cancer. MIF has been reported to play a central role in tumor cell proliferation and invasion in several cancers. Immunohistochemical labeling of tumor tissue microarrays for MIF expression revealed that it was overexpressed in 21 of 29 gallbladder adenocarcinoma cases. Silencing/inhibition of MIF using siRNA and/or MIF antagonists resulted in a significant decrease in cell viability, colony forming ability and invasive property of the gallbladder cancer cells. CONCLUSIONS: Our findings support the role of MIF in tumor aggressiveness and suggest its potential application as a therapeutic target for gallbladder cancer.


Assuntos
Biomarcadores Tumorais/biossíntese , Neoplasias da Vesícula Biliar/genética , Oxirredutases Intramoleculares/biossíntese , Fatores Inibidores da Migração de Macrófagos/biossíntese , Prognóstico , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Detecção Precoce de Câncer , Neoplasias da Vesícula Biliar/diagnóstico , Neoplasias da Vesícula Biliar/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Macrófagos/metabolismo , Macrófagos/patologia , Proteínas de Neoplasias/biossíntese , Proteômica
7.
Future Oncol ; 11(2): 233-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25066711

RESUMO

AIM: The aim of the study was to evaluate the use of global and gene-specific DNA methylation changes as potential biomarkers for gallbladder cancer (GBC) in a cohort from Chile. MATERIAL & METHODS: DNA methylation was analyzed through an ELISA-based technique and quantitative methylation-specific PCR. RESULTS: Global DNA Methylation Index (p = 0.02) and promoter methylation of SSBP2 (p = 0.01) and ESR1 (p = 0.05) were significantly different in GBC when compared with cholecystitis. Receiver curve operator analysis revealed promoter methylation of APC, CDKN2A, ESR1, PGP9.5 and SSBP2, together with the Global DNA Methylation Index, had 71% sensitivity, 95% specificity, a 0.97 area under the curve and a positive predictive value of 90%. CONCLUSION: Global and gene-specific DNA methylation may be useful biomarkers for GBC clinical assessment.


Assuntos
Colecistite/diagnóstico , Metilação de DNA , Neoplasias da Vesícula Biliar/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Chile , Colecistite/genética , Feminino , Neoplasias da Vesícula Biliar/genética , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Regiões Promotoras Genéticas , Curva ROC , Análise de Sequência de DNA
8.
J Proteome Res ; 13(6): 2749-60, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24669763

RESUMO

As part of the chromosome-centric human proteome project (C-HPP) initiative, we report our progress on the annotation of chromosome 22. Chromosome 22, spanning 51 million base pairs, was the first chromosome to be sequenced. Gene dosage alterations on this chromosome have been shown to be associated with a number of congenital anomalies. In addition, several rare but aggressive tumors have been associated with this chromosome. A number of important gene families including immunoglobulin lambda locus, Crystallin beta family, and APOBEC gene family are located on this chromosome. On the basis of proteomic profiling of 30 histologically normal tissues and cells using high-resolution mass spectrometry, we show protein evidence of 367 genes on chromosome 22. Importantly, this includes 47 proteins, which are currently annotated as "missing" proteins. We also confirmed the translation start sites of 120 chromosome 22-encoded proteins. Employing a comprehensive proteogenomics analysis pipeline, we provide evidence of novel coding regions on this chromosome which include upstream ORFs and novel exons in addition to correcting existing gene structures. We describe tissue-wise expression of the proteins and the distribution of gene families on this chromosome. These data have been deposited to ProteomeXchange with the identifier PXD000561.


Assuntos
Cromossomos Humanos Par 22/genética , Proteoma/genética , Sequência de Aminoácidos , Genes Neoplásicos , Humanos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Fases de Leitura Aberta , Mapeamento de Peptídeos , Proteoma/química , Proteoma/metabolismo , Proteômica
9.
Biochem Biophys Res Commun ; 446(4): 863-9, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24657443

RESUMO

Gallbladder cancer is an uncommon but lethal malignancy with particularly high incidence in Chile, India, Japan and China. There is a paucity of unbiased large-scale studies investigating molecular basis of gallbladder cancer. To systematically identify differentially regulated proteins in gallbladder cancer, iTRAQ-based quantitative proteomics of gallbladder cancer was carried out using Fourier transform high resolution mass spectrometry. Of the 2575 proteins identified, proteins upregulated in gallbladder cancer included several lysosomal proteins such as prosaposin, cathepsin Z and cathepsin H. Downregulated proteins included serine protease HTRA1 and transgelin, which have been reported to be downregulated in several other cancers. Novel biomarker candidates including prosaposin and transgelin were validated to be upregulated and downregulated, respectively, in gallbladder cancer using tissue microarrays. Our study provides the first large scale proteomic characterization of gallbladder cancer which will serve as a resource for future discovery of biomarkers for gallbladder cancer.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Vesícula Biliar/patologia , Vesícula Biliar/patologia , Proteínas dos Microfilamentos/análise , Proteínas Musculares/análise , Saposinas/análise , Biomarcadores Tumorais/genética , Cromatografia Líquida , Vesícula Biliar/metabolismo , Neoplasias da Vesícula Biliar/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética , Proteoma/análise , Proteoma/genética , Proteômica , Saposinas/genética , Espectrometria de Massas em Tandem , Análise Serial de Tecidos
10.
Clin Proteomics ; 11(1): 5, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24484775

RESUMO

BACKGROUND: Cryptococcus neoformans, a basidiomycetous fungus of universal occurrence, is a significant opportunistic human pathogen causing meningitis. Owing to an increase in the number of immunosuppressed individuals along with emergence of drug-resistant strains, C. neoformans is gaining importance as a pathogen. Although, whole genome sequencing of three varieties of C. neoformans has been completed recently, no global proteomic studies have yet been reported. RESULTS: We performed a comprehensive proteomic analysis of C. neoformans var. grubii (Serotype A), which is the most virulent variety, in order to provide protein-level evidence for computationally predicted gene models and to refine the existing annotations. We confirmed the protein-coding potential of 3,674 genes from a total of 6,980 predicted protein-coding genes. We also identified 4 novel genes and corrected 104 predicted gene models. In addition, our studies led to the correction of translational start site, splice junctions and reading frame used for translation in a number of proteins. Finally, we validated a subset of our novel findings by RT-PCR and sequencing. CONCLUSIONS: Proteogenomic investigation described here facilitated the validation and refinement of computationally derived gene models in the intron-rich genome of C. neoformans, an important fungal pathogen in humans.

11.
J Commun Dis ; 44(4): 239-43, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25145073

RESUMO

Silver is one of the heavy metals traditionally played major role in the human life. It is used in the form of ornaments or as containers to store or drink water and other consumable liquids. The study was designed to observe the effect of water storage in silver containers on enteric pathogens. Three sets of sterile silver, stainless steel and glass metal screw capped containers were filled with non-chlorinated sterilized well water. One each of the three sets was inoculated with enteric pathogens viz. Shigella dysenteriae, Vibrio cholerae O1 and Salmonella typhi cultures drawn from the laboratory stock and incubated at 37 degrees C for varying periods. Preliminary findings of this study indicated that silver is bactericidal within an hour to Shigella dysenteriae, Vibrio cholerae O1 and Salmonella typhi which cause life-threatening enteric human diseases. The quantity of silver needed to eliminate these bacteria was found to be less than 2.5 ug/dl at pH 6.5. This study reveals the potential for silver containers to be used to disinfect natural water in areas of poor hygiene and sanitation where groundwater is the main source of drinking water.


Assuntos
Água Potável/microbiologia , Enterobacteriaceae/efeitos dos fármacos , Prata/farmacologia , Contagem de Colônia Microbiana , Enterobacteriaceae/isolamento & purificação , Viabilidade Microbiana/efeitos dos fármacos , Microbiologia da Água
12.
Sci Rep ; 11(1): 9397, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931671

RESUMO

Shammah is a smokeless tobacco product often mixed with lime, ash, black pepper and flavorings. Exposure to shammah has been linked with dental diseases and oral squamous cell carcinoma. There is limited literature on the prevalence of shammah and its role in pathobiology of oral cancer. In this study, we developed a cellular model to understand the effect of chronic shammah exposure on oral keratinocytes. Chronic exposure to shammah resulted in increased proliferation and invasiveness of non-transformed oral keratinocytes. Quantitative proteomics of shammah treated cells compared to untreated cells led to quantification of 4712 proteins of which 402 were found to be significantly altered. In addition, phosphoproteomics analysis of shammah treated cells compared to untreated revealed hyperphosphorylation of 36 proteins and hypophosphorylation of 83 proteins (twofold, p-value ≤ 0.05). Bioinformatics analysis of significantly altered proteins showed enrichment of proteins involved in extracellular matrix interactions, necroptosis and peroxisome mediated fatty acid oxidation. Kinase-Substrate Enrichment Analysis showed significant increase in activity of kinases such as ROCK1, RAF1, PRKCE and HIPK2 in shammah treated cells. These results provide better understanding of how shammah transforms non-neoplastic cells and warrants additional studies that may assist in improved early diagnosis and treatment of shammah induced oral cancer.


Assuntos
Queratinócitos/metabolismo , Boca/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Tabaco sem Fumaça/efeitos adversos , Células Cultivadas , Humanos , Queratinócitos/efeitos dos fármacos , Boca/efeitos dos fármacos , Proteoma/análise , Proteoma/efeitos dos fármacos , Transdução de Sinais
13.
Front Oncol ; 11: 677051, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336664

RESUMO

Despite recent advancements, the 5 year survival of head and neck squamous cell carcinoma (HNSCC) hovers at 60%. DCLK1 has been shown to regulate epithelial-to-mesenchymal transition as well as serving as a cancer stem cell marker in colon, pancreatic and renal cancer. Although it was reported that DCLK1 is associated with poor prognosis in oropharyngeal cancers, very little is known about the molecular characterization of DCLK1 in HNSCC. In this study, we performed a comprehensive transcriptome-based computational analysis on hundreds of HNSCC patients from TCGA and GEO databases, and found that DCLK1 expression positively correlates with NOTCH signaling pathway activation. Since NOTCH signaling has a recognized role in HNSCC tumorigenesis, we next performed a series of in vitro experiments in a collection of HNSCC cell lines to investigate the role of DCLK1 in NOTCH pathway regulation. Our analyses revealed that DCLK1 inhibition, using either a pharmacological inhibitor or siRNA, resulted in substantially decreased proliferation, invasion, migration, and colony formation. Furthermore, these effects paralleled downregulation of active NOTCH1, and its downstream effectors, HEY1, HES1 and HES5, whereas overexpression of DCLK1 in normal keratinocytes, lead to an upregulation of NOTCH signaling associated with increased proliferation. Analysis of 233 primary and 40 recurrent HNSCC cancer biopsies revealed that high DCLK1 expression was associated with poor prognosis and showed a trend towards higher active NOTCH1 expression in tumors with elevated DCLK1. Our results demonstrate the novel role of DCLK1 as a regulator of NOTCH signaling network and suggest its potential as a therapeutic target in HNSCC.

15.
Nat Commun ; 11(1): 4225, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839463

RESUMO

Gallbladder cancer (GBC) is an aggressive gastrointestinal malignancy with no approved targeted therapy. Here, we analyze exomes (n = 160), transcriptomes (n = 115), and low pass whole genomes (n = 146) from 167 gallbladder cancers (GBCs) from patients in Korea, India and Chile. In addition, we also sequence samples from 39 GBC high-risk patients and detect evidence of early cancer-related genomic lesions. Among the several significantly mutated genes not previously linked to GBC are ETS domain genes ELF3 and EHF, CTNNB1, APC, NSD1, KAT8, STK11 and NFE2L2. A majority of ELF3 alterations are frame-shift mutations that result in several cancer-specific neoantigens that activate T-cells indicating that they are cancer vaccine candidates. In addition, we identify recurrent alterations in KEAP1/NFE2L2 and WNT pathway in GBC. Taken together, these define multiple targetable therapeutic interventions opportunities for GBC treatment and management.


Assuntos
Proteínas de Ligação a DNA/genética , Mutação da Fase de Leitura , Neoplasias da Vesícula Biliar/genética , Predisposição Genética para Doença/genética , Proteínas Proto-Oncogênicas c-ets/genética , Fatores de Transcrição/genética , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Chile , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Neoplasias da Vesícula Biliar/diagnóstico , Neoplasias da Vesícula Biliar/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Humanos , Índia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-ets/imunologia , Proteínas Proto-Oncogênicas c-ets/metabolismo , República da Coreia , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
16.
J Cell Commun Signal ; 13(3): 281-289, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31321732

RESUMO

Shisha smoking has been epidemiologically linked to oral cancer. However, few studies have investigated the pathobiology of shisha-induced cellular transformation. We studied the effects of chronic shisha exposure (8 months) in an in vitro model using immortalized, non-neoplastic oral keratinocytes (OKF6/TERT1). Quantitative proteomic and phosphoproteomic analyses were performed on OKF6/TERT1 cells treated with shisha extract for a period of 8 months. Pathway analysis was carried out to identify significantly enriched biological processes in shisha-treated cells. Chronic shisha exposure resulted in increased cell scattering phenomenon in OKF6/TERT1 cells. Data analysis revealed differential phosphorylation of 164 peptides (fold change ≥1.5, p ≤ 0.0.5) corresponding to 136 proteins. Proteins associated with mTORC1 and EIF4F complexes involved in initiating protein translation were seen to be enriched upon shisha treatment. Network analysis also highlighted downregulation of proteins involved in Type I interferon signaling in shisha-treated cells. Quantitative phosphoproteomic approach elucidated global perturbations to the molecular milieu of oral keratinocytes upon shisha exposure. Further studies are needed to validate putative targets in oral cancer patients with shisha smoking history.

17.
Cancer Biomark ; 25(1): 29-41, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31033461

RESUMO

BACKGROUND: Shisha smoking has been associated with multiple diseases including oral cancer. However, a mechanistic study to investigate alteration of secreted proteins in oral cells due to shisha smoking is lacking. OBJECTIVES: Elucidation of differentially secreted proteins by immortalized human normal oral keratinocytes (OKF6/TERT1) upon chronic exposure to shisha. METHODS: OKF6/TERT1 was chronically treated with 0.5% shisha extract for 8 months. Conditioned media from shisha treated (OKF6/TERT1-Shisha) and untreated (OKF6/TERT1-Parental) cells were subjected to TMT-based quantitative proteomic analysis. Bioinformatics analysis of differentially secreted proteins was carried out using SignalP, SecretomeP and TMHMM. Immunoblot validation of selected proteins was carried out to confirm the proteomics results. RESULTS: Proteomic analysis of OKF6/TERT1-Parental and OKF6/TERT1-Shisha secretome resulted in the identification of 1,598 proteins, of which 218 proteins were found to be differentially secreted (⩾ 1.5-fold; p-value ⩽ 0.05) in shisha treated cells. Bioinformatics analysis using prediction tools showed secretory potential of differentially secreted proteins identified in OKF6/TERT1-Shisha. Western blotting validated the expression of AKR1C2, HSPH1 and MMP9 in OKF6/TERT1-Shisha secretome in agreement with proteomic data. CONCLUSION: This study serves as a useful resource to understand the effect of chronic shisha smoking on the milieu of secreted proteins of oral cells. In vivo studies are warranted to supplement our in vitro data to elucidate the role of these proteins as early diagnostic biomarkers for oral carcinogenesis among shisha smokers.


Assuntos
Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Proteoma/efeitos dos fármacos , Tabaco para Cachimbos de Água/toxicidade , Biomarcadores Tumorais/metabolismo , Linhagem Celular , Biologia Computacional , Humanos , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/metabolismo , Extratos Vegetais/toxicidade , Proteoma/metabolismo , Proteômica
18.
OMICS ; 23(2): 86-97, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30767727

RESUMO

Shisha (water pipe) smoking is falsely believed to be a hazard-free habit and has become a major public health concern. Studies have reported shisha smoking to be associated with oral lesions, as well as carcinomas of the lung, esophagus, bladder, and pancreas. A deeper understanding of the underlying molecular mechanisms would contribute to identification of biomarkers for targeted public health screening, therapeutic innovation, and better prognosis of associated diseases. In this study, we have established an in vitro chronic cellular model of shisha-exposed oral keratinocytes to study the effect of shisha on oral cells. Normal nontransformed, immortalized oral keratinocytes were chronically exposed to shisha extract for 8 months. This resulted in significant increase in cellular proliferation and cell invasion in shisha-exposed cells compared to the parental cells. Quantitative proteomic analysis of OKF6/TERT1-Parental and OKF6/TERT1-Shisha cells resulted in the identification of 5515 proteins. Forty-three differentially expressed proteins were found to be common across all conditions. Bioinformatic analysis of the dysregulated proteins identified in the proteomic study revealed dysregulation of interferon pathway, upregulation of proteins involved in cell growth, and downregulation of immune processes. The present findings reveal that chronic exposure of normal oral keratinocytes to shisha leads to cellular transformation and dysregulation of immune response. To the best of our knowledge, this is the first report that has developed a model of oral keratinocytes chronically exposed to shisha and identified proteomic alterations associated with shisha exposure. However, further research is required to evaluate the health burden of shisha smoking.


Assuntos
Biomarcadores/sangue , Queratinócitos/metabolismo , Proteômica/métodos , Fumar Cachimbo de Água/efeitos adversos , Humanos , Queratinócitos/efeitos dos fármacos , Proteoma/análise , Saúde Pública , Cachimbos de Água
19.
J Cell Commun Signal ; 13(2): 163-177, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30666556

RESUMO

Gallbladder cancer (GBC) is a rare malignancy, associated with poor disease prognosis with a 5-year survival of only 20%. This has been attributed to late presentation of the disease, lack of early diagnostic markers and limited efficacy of therapeutic interventions. Elucidation of molecular events in GBC can contribute to better management of the disease by aiding in the identification of therapeutic targets. To identify aberrantly activated signaling events in GBC, tandem mass tag-based quantitative phosphoproteomic analysis of five GBC cell lines was carried out. Proline-rich Akt substrate 40 kDa (PRAS40) was one of the proteins found to be hyperphosphorylated in all the invasive GBC cell lines. Tissue microarray-based immunohistochemical labeling of phospho-PRAS40 (T246) revealed moderate to strong staining in 77% of the primary gallbladder adenocarcinoma cases. Regulation of PRAS40 activity by inhibiting its upstream kinase PIM1 resulted in a significant decrease in cell proliferation, colony forming and invasive ability of GBC cells. Our results support the role of PRAS40 phosphorylation in GBC cell survival and aggressiveness. This study also elucidates phospho-PRAS40 as a clinical marker in GBC and the role of PIM1 as a therapeutic target in GBC.

20.
Cancer Biol Ther ; 19(9): 773-785, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29723088

RESUMO

Tobacco usage is a known risk factor associated with development of oral cancer. It is mainly consumed in two different forms (smoking and chewing) that vary in their composition and methods of intake. Despite being the leading cause of oral cancer, molecular alterations induced by tobacco are poorly understood. We therefore sought to investigate the adverse effects of cigarette smoke/chewing tobacco exposure in oral keratinocytes (OKF6/TERT1). OKF6/TERT1 cells acquired oncogenic phenotype after treating with cigarette smoke/chewing tobacco for a period of 8 months. We employed whole exome sequencing (WES) and quantitative proteomics to investigate the molecular alterations in oral keratinocytes chronically exposed to smoke/ chewing tobacco. Exome sequencing revealed distinct mutational spectrum and copy number alterations in smoke/ chewing tobacco treated cells. We also observed differences in proteomic alterations. Proteins downstream of MAPK1 and EGFR were dysregulated in smoke and chewing tobacco exposed cells, respectively. This study can serve as a reference for fundamental damages on oral cells as a consequence of exposure to different forms of tobacco.


Assuntos
Queratinócitos/metabolismo , Mucosa Bucal/citologia , Fumar/efeitos adversos , Uso de Tabaco/efeitos adversos , Biomarcadores , Transformação Celular Neoplásica , Exposição Ambiental , Perfilação da Expressão Gênica , Humanos , Fenótipo , Proteoma , Proteômica/métodos , Transcriptoma , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA