Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952028

RESUMO

Plant homeodomain leucine zipper IV (HD-Zip IV) transcription factors (TFs) contain an evolutionarily conserved steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain. While the START domain is required for TF activity, its presumed role as a lipid sensor is not clear. Here we used tandem affinity purification from Arabidopsis cell cultures to demonstrate that PROTODERMAL FACTOR2 (PDF2), a representative member that controls epidermal differentiation, recruits lysophosphatidylcholines (LysoPCs) in a START-dependent manner. Microscale thermophoresis assays confirmed that a missense mutation in a predicted ligand contact site reduces lysophospholipid binding. We additionally found that PDF2 acts as a transcriptional regulator of phospholipid- and phosphate (Pi) starvation-related genes and binds to a palindromic octamer with consensus to a Pi response element. Phospholipid homeostasis and elongation growth were altered in pdf2 mutants according to Pi availability. Cycloheximide chase experiments revealed a role for START in maintaining protein levels, and Pi starvation resulted in enhanced protein destabilization, suggesting a mechanism by which lipid binding controls TF activity. We propose that the START domain serves as a molecular sensor for membrane phospholipid status in the epidermis. Our data provide insights toward understanding how the lipid metabolome integrates Pi availability with gene expression.

2.
Plant Physiol ; 190(4): 2315-2334, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35984304

RESUMO

Class IV homeodomain leucine-zipper transcription factors (HD-Zip IV TFs) are key regulators of epidermal differentiation that are characterized by a DNA-binding HD in conjunction with a lipid-binding domain termed steroidogenic acute regulatory-related lipid transfer (START). Previous work established that the START domain of GLABRA2 (GL2), a HD-Zip IV member from Arabidopsis (Arabidopsis thaliana), is required for TF activity. Here, we addressed the functions and possible interactions of START and the HD in DNA binding, dimerization, and protein turnover. Deletion analysis of the HD and missense mutations of a conserved lysine (K146) resulted in phenotypic defects in leaf trichomes, root hairs, and seed mucilage, similar to those observed for START domain mutants, despite nuclear localization of the respective proteins. In vitro and in vivo experiments demonstrated that while HD mutations impair binding to target DNA, the START domain is dispensable for DNA binding. Vice versa, protein interaction assays revealed impaired GL2 dimerization for multiple alleles of START mutants, but not HD mutants. Using in vivo cycloheximide chase experiments, we provided evidence for the role of START, but not HD, in maintaining protein stability. This work advances our mechanistic understanding of HD-Zip TFs as multidomain regulators of epidermal development in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Dimerização , Proteínas de Homeodomínio/metabolismo , Zíper de Leucina , DNA/metabolismo , Lipídeos
3.
Plant Signal Behav ; 17(1): 2119013, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36154907

RESUMO

Green fluorescent protein (GFP) and its derivatives are extensively used for labeling cells, monitoring gene expression and/or tracking the localization or interactions of proteins. Previous reports of detrimental effects of fluorescent protein (FP) expression include cytotoxicity and interference with fusion protein function or localization. Only a few studies have documented the fluorescent tag-specific effects in plants. Here, we show that placing an enhanced yellow FP (EYFP) tag on the amino-terminus of GLABRA2 (GL2) and PROTODERMAL FACTOR2 (PDF2), two developmentally important HD-Zip IV transcription factors from Arabidopsis, enhances their protein stability. Additionally, expression of EYFP:GL2 not only rescued the gl2 null mutant but also resulted in the abnormal development of abaxially curled leaves associated with EYFP-tag induced GL2 overexpression. Our study raises concerns on the use of FPs regarding their effects on the native properties of target proteins as well as biological consequences of fusion protein expression on morphology.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Mol Immunol ; 121: 99-110, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32199212

RESUMO

The complement cascade consists of cell bound and serum proteins acting together to protect the host from pathogens, remove cancerous cells and effectively links innate and adaptive immune responses. Despite its usefulness in microbial neutralization and clearance of cancerous cells, excessive complement activation causes an immune imbalance and tissue damage in the host. Hence, a series of complement regulatory proteins present at a higher concentration in blood plasma and on cell surfaces tightly regulate the cascade. The complement cascade can be initiated by B-1 B cell production of natural antibodies. Natural antibodies arise spontaneously without any known exogenous antigenic or microbial stimulus and protect against invading pathogens, clear apoptotic cells, provide tissue homeostasis, and modulate adaptive immune functions. Natural IgM antibodies recognize microbial and cancer antigens and serve as an activator of complement mediated lysis. This review will discuss advances in complement activation and regulation in bacterial and viral infections, and cancer. We will also explore the crosstalk of natural antibodies with bacterial populations and cancer.


Assuntos
Infecções Bacterianas/imunologia , Imunidade Humoral , Imunidade Inata , Neoplasias/imunologia , Viroses/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Apoptose/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Ativação do Complemento , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Humanos , Imunoglobulina M/imunologia , Imunoglobulina M/metabolismo , Receptores de Complemento/imunologia , Receptores de Complemento/metabolismo , Evasão Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA