Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 30(10): 2583-7, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24580143

RESUMO

Low-voltage stimuli-responsive actuators based on carbide-derived carbon (CDC) porous structures were demonstrated. Bending actuators showed a differential electromechanical response defined by the porosity of the CDC used in the electrode layer. Highly porous CDCs prepared from TiC (mainly microporous), B4C (micromesoporous), and Mo2C (mainly mesoporous) precursors were selected to demonstrate the influence of porosity parameters on the electromechanical performance of actuators. CDC-based bending-type actuators showed a porosity-driven displacement response over a frequency range of 200 to 0.005 Hz at an applied excitation voltage of ±2 V. The displacement response of the CDC actuators increased with an increasing number of mesopores in the electrode layer, and the generated strain of the bending actuators was proportional to the total porosity (micropores and mesopores) of the CDC. The modifiable electromechanical response that arises from the precise porosity control attained through tailoring the CDC architecture demonstrates that these actuators hold great promise for smart, low-voltage-driven actuation devices.


Assuntos
Carbono/química , Nanotecnologia/métodos , Eletrodos , Porosidade
2.
J Chem Phys ; 138(23): 234704, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23802973

RESUMO

The electrochemical thermodynamics of electrolytes in porous electrodes is qualitatively different from that in the bulk with planar electrodes when the pore size is comparable to the size of the electrolyte ions. In this paper, we discuss the thermodynamics of a two component electrolyte in a porous electrode by using Monte Carlo simulation. We show that electrolyte ions are selectively adsorbed in porous electrodes and the relative concentration of the two components significantly changes as a function of the applied voltage and the pore size. This selectivity is observed not only for the counterions but also for the coions.


Assuntos
Eletrodos , Eletrólitos/química , Íons/química , Simulação por Computador , Método de Monte Carlo , Transição de Fase , Porosidade , Eletricidade Estática , Propriedades de Superfície , Termodinâmica
3.
Int J Biol Macromol ; 233: 123520, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739045

RESUMO

Nanocellulose is a remarkable biomaterial. It is a plastic alternative with significance from the viewpoint of carbon offset and neutrality. To efficiently develop nanocellulose-based functional materials, it is imperative to evaluate their dispersion states. In this study, the sedimentation equivalent diameter distributions of cellulose nanocrystals (CNC) are analyzed by centrifugal sedimentation. The diameter distribution is well correlated with that estimated from the widths and the lengths of the CNCs obtained by transmission electron microscopy. Hence, centrifugal sedimentation has the potential to assess the dispersion states of nanocellulose on the nanometer scale and should contribute to basic research and applications.


Assuntos
Celulose , Nanopartículas , Celulose/química , Nanopartículas/química , Materiais Biocompatíveis , Fenômenos Físicos , Microscopia Eletrônica de Transmissão
4.
Chemphyschem ; 13(8): 2108-14, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22447630

RESUMO

Single-walled carbon nanotubes (SWCNT) embedded in a non-electroactive polymer are electrochemically characterized. The increasing voltammetric maximums obtained with rising temperature or electrolyte concentration point to a chemical nature of the processes. The chemical kinetic control of the processes is corroborated by its empirical chemical kinetics: the initial reaction rates are obtained from the chronoamperometric responses to potential steps. The activation energy of the reaction includes information about the structural state of the SWCNT before the potential step. Under constant current the potential evolution (chronopotentiometric response) and consumed electrical energy at any time change as a function of (are sensors of) the experimental temperature or the electrolyte concentration. The reactive material, or any device based on this material, senses these working variables, and shows dual and simultaneous actuating-sensing properties.


Assuntos
Nanotubos de Carbono/química , Técnicas Eletroquímicas , Eletrólitos/química , Cinética , Oxirredução , Polímeros/química , Polivinil/química , Temperatura
5.
J Chem Phys ; 136(9): 094701, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22401462

RESUMO

The electrochemical thermodynamics of electrolytes in porous electrodes is qualitatively different from that in the bulk with planar electrodes when the pore size is comparable to the size of the electrolyte ions. In this study, the effect of the ion size asymmetry on the thermodynamics in porous electrodes was studied by using Monte Carlo simulation. We used the electrolyte ions for which the size of the cations and that of anions is different. Due to the asymmetry in the ion size, the ionic structure and the way the surface charge is distributed on the electrode surfaces were found to be qualitatively different in the cathode and in the anode. In particular, for some ranges of applied voltage, the distribution of the surface charge induced on the electrode planes shows inhomogeneity, which is not intrinsic to the structure of the porous electrodes. The transition from the homogeneous to the inhomogeneous distribution of surface charge on changing the voltage is a second order phase transition.

6.
J Chem Phys ; 134(15): 154710, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21513411

RESUMO

It is shown by Monte Carlo simulation that electrochemical thermodynamics of electrolytes in a porous electrode is qualitatively different from that in the bulk with a planar electrode. In particular, first order phase transitions occur in porous electrodes when the pore size is comparable to the ion size of the electrolytes: as the voltage is increased from zero, the surface charge density and the ion density in the porous electrodes discontinuously change at a specific voltage. The critical points for those phase transitions are identified.


Assuntos
Eletrólitos/química , Método de Monte Carlo , Transição de Fase , Eletricidade , Eletroquímica , Eletrodos , Porosidade
7.
J Chem Phys ; 132(14): 144705, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20406008

RESUMO

Monte Carlo simulations in the constant voltage ensemble were performed for electrolytes in porous electrodes. It was found that the electrical and mechanical properties in porous electrodes dramatically change depending on the pore size and the dielectric constant of the medium. For a low dielectric constant of the medium, the capacitance of porous electrodes tends to increase as the pore size decreases and the pressure in the porous electrodes is positive or negative depending on the pore size. For a high dielectric constant of the medium, on the contrary, the capacitance tends to decrease as the pore size decreases and the pressure is positive for all the conditions studied here. Such pore size dependencies are explained in terms of the balance between the electrostatic interaction and the volume exclusion interaction in the porous electrode.


Assuntos
Eletrólitos/química , Método de Monte Carlo , Eletrodos , Modelos Químicos , Tamanho da Partícula , Porosidade , Eletricidade Estática , Propriedades de Superfície
8.
Sci Rep ; 4: 6913, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25372857

RESUMO

A large-scale effort was carried out to test the performance of seven types of ionic electroactive polymer (IEAP) actuators in space-hazardous environmental factors in laboratory conditions. The results substantiate that the IEAP materials are tolerant to long-term freezing and vacuum environments as well as ionizing Gamma-, X-ray, and UV radiation at the levels corresponding to low Earth orbit (LEO) conditions. The main aim of this material behaviour investigation is to understand and predict device service time for prolonged exposure to space environment.


Assuntos
Órgãos Artificiais , Eletrólitos/química , Polímeros/química , Simulação de Ambiente Espacial/instrumentação , Radiação Cósmica , Planeta Terra , Técnicas Eletroquímicas , Eletrólitos/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Meio Ambiente Extraterreno , Congelamento , Raios gama , Humanos , Teste de Materiais , Músculos/fisiologia , Polímeros/efeitos da radiação , Voo Espacial , Raios Ultravioleta , Raios X
9.
ACS Nano ; 7(10): 8736-42, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23952240

RESUMO

Insect wings have many unique and complex nano/microstructures that are presently beyond the capabilities of any current technology to reproduce them artificially. In particular, Morpho butterflies are an attractive type of insect because their multifunctional wings are composed of nano/microstructures. In this paper, we show that carbon nanotube-containing composite adopts honeycomb-shaped networks when simply self-assembled on Morpho butterfly wings used as a template. The unique nano/microstructure of the composites exhibits multifunctionalities such as laser-triggered remote-heating, high electrical conductivity, and repetitive DNA amplification. Our present study highlights the important progress that has been made toward the development of smart nanobiomaterials for various applications such as digital diagnosis, soft wearable electronic devices, photosensors, and photovoltaic cells.


Assuntos
Borboletas , Nanotubos de Carbono , Asas de Animais , Animais , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA