Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
1.
Trends Genet ; 39(1): 15-30, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36414480

RESUMO

G-quadruplexes (G4s) are non-canonical structures formed in guanine (G)-rich sequences through stacked G tetrads by Hoogsteen hydrogen bonding. Several studies have demonstrated the existence of G4s in the genome of various organisms, including humans, and have proposed that G4s have a regulatory role in various cellular functions. However, little is known regarding the dissemination of G4s in mitochondria. In this review, we report the observation that the number of potential G4-forming sequences in the mitochondrial genome increases with the evolutionary complexity of different species, suggesting that G4s have a beneficial role in higher-order organisms. We also discuss the possible function of G4s in mitochondrial (mt)DNA and long noncoding (lnc)RNA and their role in various biological processes.


Assuntos
Quadruplex G , Humanos , Mitocôndrias/genética
2.
Nucleic Acids Res ; 51(11): 5634-5646, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37158237

RESUMO

In this study, we specifically visualized DNA molecules at their AT base pairs after in vitro phage ejection. Our AT-specific visualization revealed that either end of the DNA molecule could be ejected first with a nearly 50% probability. This observation challenges the generally accepted theory of Last In First Out (LIFO), which states that the end of the phage λ DNA that enters the capsid last during phage packaging is the first to be ejected, and that both ends of the DNA are unable to move within the extremely condensed phage capsid. To support our observations, we conducted computer simulations that revealed that both ends of the DNA molecule are randomized, resulting in the observed near 50% probability. Additionally, we found that the length of the ejected DNA by LIFO was consistently longer than that by First In First Out (FIFO) during in vitro phage ejection. Our simulations attributed this difference in length to the stiffness difference of the remaining DNA within the phage capsid. In conclusion, this study demonstrates that a DNA molecule within an extremely dense phage capsid exhibits a degree of mobility, allowing it to switch ends during ejection.


Assuntos
Bacteriófago lambda , DNA Viral , Empacotamento do Genoma Viral , Bacteriófago lambda/fisiologia , DNA Viral/metabolismo , Capsídeo/metabolismo
3.
Allergy ; 79(4): 843-860, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38055191

RESUMO

Transcription therapy is an emerging approach that centers on identifying the factors associated with the malfunctioning gene transcription machinery that causes diseases and controlling them with designer agents. Until now, the primary research focus in therapeutic gene modulation has been on small-molecule drugs that target epigenetic enzymes and critical signaling pathways. However, nucleic acid-based small molecules have gained popularity in recent years for their amenability to be pre-designed and realize operative control over the dynamic transcription machinery that governs how the immune system responds to diseases. Pyrrole-imidazole polyamides (PIPs) are well-established DNA-based small-molecule gene regulators that overcome the limitations of their conventional counterparts owing to their sequence-targeted specificity, versatile regulatory efficiency, and biocompatibility. Here, we emphasize the rational design of PIPs, their functional mechanisms, and their potential as targeted transcription therapeutics for disease treatment by regulating the immune response. Furthermore, we also discuss the challenges and foresight of this approach in personalized immunotherapy in precision medicine.


Assuntos
Ácidos Nucleicos , Humanos , DNA , Imunidade
4.
Cereb Cortex ; 33(22): 11070-11079, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37815245

RESUMO

Adolescence is a critical period for psychological difficulties. Auditory mismatch negativity (MMN) and gamma-band auditory steady-state response (ASSR) are representative electrophysiological indices that mature during adolescence. However, the longitudinal association between MMN/ASSR and psychological difficulties among adolescents remains unclear. We measured MMN amplitude for duration and frequency changes and ASSR twice in a subsample (n = 67, mean age 13.4 and 16.1 years, respectively) from a large-scale population-based cohort. No significant longitudinal changes were observed in any of the electroencephalography indices. Changes in SDQ-TD were significantly associated with changes in duration MMN, but not frequency MMN and ASSR. Furthermore, the subgroup with higher SDQ-TD at follow-up showed a significant duration MMN decrease over time, whereas the subgroup with lower SDQ-TD did not. The results of our population neuroscience study suggest that insufficient changes in electroencephalography indices may have been because of the short follow-up period or non-monotonic change during adolescence, and indicated that the longitudinal association with psychological difficulties was specific to the duration MMN. These findings provide new insights that electrophysiological change may underlie the development of psychosocial difficulties emerging in adolescence.


Assuntos
Eletroencefalografia , Potenciais Evocados Auditivos , Humanos , Adolescente , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos , Percepção Auditiva/fisiologia
5.
Nucleic Acids Res ; 50(2): 697-703, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35037040

RESUMO

Both ligand binding and nanocavity can increase the stability of a biomolecular structure. Using mechanical unfolding in optical tweezers, here we found that a DNA origami nanobowl drastically increased the stability of a human telomeric G-quadruplex bound with a pyridostatin (PDS) ligand. Such a stability change is equivalent to >4 orders of magnitude increase (upper limit) in binding affinity (Kd: 490 nM → 10 pM (lower limit)). Since confined space can assist the binding through a proximity effect between the ligand-receptor pair and a nanoconfinement effect that is mediated by water molecules, we named such a binding as mechanochemical binding. After minimizing the proximity effect by using PDS that can enter or leave the DNA nanobowl freely, we attributed the increased affinity to the nanoconfinement effect (22%) and the proximity effect (78%). This represents the first quantification to dissect the effects of proximity and nanoconfinement on binding events in nanocavities. We anticipate these DNA nanoassemblies can deliver both chemical (i.e. ligand) and mechanical (i.e. nanocavity) milieus to facilitate robust mechanochemical binding in various biological systems.


Assuntos
DNA/química , Ligantes , Modelos Teóricos , Nanoestruturas/química , Quadruplex G , Humanos , Modelos Moleculares , Conformação Molecular
6.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33975946

RESUMO

Compaction of bulky DNA is a universal issue for all DNA-based life forms. Chloroplast nucleoids (chloroplast DNA-protein complexes) are critical for chloroplast DNA maintenance and transcription, thereby supporting photosynthesis, but their detailed structure remains enigmatic. Our proteomic analysis of chloroplast nucleoids of the green alga Chlamydomonas reinhardtii identified a protein (HBD1) with a tandem repeat of two DNA-binding high mobility group box (HMG-box) domains, which is structurally similar to major mitochondrial nucleoid proteins transcription factor A, mitochondrial (TFAM), and ARS binding factor 2 protein (Abf2p). Disruption of the HBD1 gene by CRISPR-Cas9-mediated genome editing resulted in the scattering of chloroplast nucleoids. This phenotype was complemented when intact HBD1 was reintroduced, whereas a truncated HBD1 with a single HMG-box domain failed to complement the phenotype. Furthermore, ectopic expression of HBD1 in the mitochondria of yeast Δabf2 mutant successfully complemented the defects, suggesting functional similarity between HBD1 and Abf2p. Furthermore, in vitro assays of HBD1, including the electrophoretic mobility shift assay and DNA origami/atomic force microscopy, showed that HBD1 is capable of introducing U-turns and cross-strand bridges, indicating that proteins with two HMG-box domains would function as DNA clips to compact DNA in both chloroplast and mitochondrial nucleoids.


Assuntos
Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/genética , DNA de Cloroplastos/genética , Genoma de Cloroplastos/genética , Domínios HMG-Box/genética , Sequências de Repetição em Tandem/genética , Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/classificação , Proteínas de Cloroplastos/metabolismo , DNA de Cloroplastos/metabolismo , Regulação da Expressão Gênica , Espectrometria de Massas/métodos , Mutação , Filogenia , Ligação Proteica , Proteômica/métodos
7.
Nano Lett ; 23(5): 2046-2055, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36688839

RESUMO

The growing knowledge of the links between aberrant mitochondrial gene transcription and human diseases necessitates both an effective and dynamic approach to control mitochondrial DNA (mtDNA) transcription. To address this challenge, we developed a nanoparticle-based synthetic mitochondrial transcription regulator (MitoScript). MitoScript provides great colloidal stability, excellent biocompatibility, efficient cell uptake, and selective mitochondria targeting and can be monitored in live cells using near-infrared fluorescence. Notably, MitoScript controlled mtDNA transcription in a human cell line in an effective and selective manner. MitoScript targeting the light strand promoter region of mtDNA resulted in the downregulation of ND6 gene silencing, which eventually affected cell redox status, with considerably increased reactive oxygen species (ROS) generation. In summary, we developed MitoScript for the efficient, nonviral modification of mitochondrial DNA transcription. Our platform technology can potentially contribute to understanding the fundamental mechanisms of mitochondrial disorders and developing effective treatments for mitochondrial diseases.


Assuntos
DNA Mitocondrial , Nanopartículas , Humanos , DNA Mitocondrial/genética , Mitocôndrias/genética , Transcrição Gênica , Transporte Biológico
8.
Chemistry ; 29(24): e202203961, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36700521

RESUMO

Förster resonance energy transfer (FRET) is an attractive tool for understanding biomolecular dynamics. FRET-based analysis of nucleosomes has the potential to fill the knowledge gaps between static structures and dynamic cellular behaviors. Compared with typical FRET pairs using bulky fluorophores introduced by flexible linkers, fluorescent nucleoside-based FRET pair has great potential since it can be fitted within the helical structures of nucleic acids. Herein we report on the construction of nucleosomes containing a nucleobase FRET pair and the investigation of experimental and theoretical FRET efficiencies through steady-state fluorescence spectroscopy and calculation based on molecular dynamics simulations, respectively. Distinguishable experimental FRET efficiencies were observed depending on the positions of FRET pairs in nucleosomal DNA. The tendency could be supported by theoretical study. This work suggests the possibility of our approach to analyze structural changes of nucleosomes by epigenetic modifications or internucleosomal interactions.


Assuntos
Ácidos Nucleicos , Nucleossomos , Transferência Ressonante de Energia de Fluorescência/métodos , DNA/química , Simulação de Dinâmica Molecular , Corantes Fluorescentes/química
9.
Bioorg Med Chem ; 81: 117208, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36780807

RESUMO

GAA repeat expansion in the first intron of the frataxin (FXN) gene represses the transcription of FXN, and that induces Friedreich's ataxia (FRDA). Pyrrole-imidazole polyamides (PIPs) are the class of oligopeptide that targets double-stranded DNA with sequence selectivity. Previously, bromodomain inhibitors such as JQ1 conjugated with PIPs were reported to selectively increase transcription. Here, we report the synthesis of a compound that increases the transcription of FXN in cells derived from an FRDA patient. The compound was effective in lower (one tenth) concentration than the compound that previously reported. High concentration of the compound is toxic, but toxicity was reduced with a host-guest complex.


Assuntos
Nylons , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Nylons/farmacologia , Expansão das Repetições de Trinucleotídeos , Regulação da Expressão Gênica , Imidazóis/farmacologia
10.
Genomics ; 114(3): 110372, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35460817

RESUMO

Modifications in RNA can influence their structure, function, and stability and play essential roles in gene expression and regulation. Methods to detect RNA modifications rely on biophysical techniques such as chromatography or mass spectrometry, which are low throughput, or on high throughput short-read sequencing techniques based on selectively reactive chemical probes. Recent studies have utilized nanopore-based fourth-generation sequencing methods to detect modifications by directly sequencing RNA in its native state. However, these approaches are based on modification-associated mismatch errors that are liable to be confounded by SNPs. Also, there is a need to generate matched knockout controls for reference, which is laborious. In this work, we introduce an internal comparison strategy termed "IndoC," where features such as 'trace' and 'current signal intensity' of potentially modified sites are compared to similar sequence contexts on the same RNA molecule within the sample, alleviating the need for matched knockout controls. We first show that in an IVT model, 'trace' is able to distinguish between artificially generated SNPs and true pseudouridine (Ψ) modifications, both of which display highly similar mismatch profiles. We then apply IndoC on yeast and human ribosomal RNA to demonstrate that previously reported Ψ sites show marked changes in their trace and signal intensity profiles compared with their unmodified counterparts in the same dataset. Finally, we perform direct RNA sequencing of RNA containing Ψ intact with a chemical probe adduct (N-cyclohexyl-N'-ß-(4-methylmorpholinium) ethylcarbodiimide [CMC]) and show that CMC reactivity also induces changes in trace and signal intensity distributions in a Ψ specific manner, allowing their separation from high mismatch sites that display SNP-like behavior.


Assuntos
Nanoporos , RNA , Humanos , RNA/metabolismo , RNA Ribossômico/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de RNA , Informática , Sequenciamento de Nucleotídeos em Larga Escala
11.
Molecules ; 28(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764241

RESUMO

The multimolecular assembly of three-dimensionally structured proteins forms their quaternary structures, some of which have high geometric symmetry. The size and complexity of protein quaternary structures often increase in a hierarchical manner, with simpler, smaller structures serving as units for larger quaternary structures. In this study, we exploited oligomerization of a ribozyme cyclic trimer to achieve larger ribozyme-based RNA assembly. By installing kissing loop (KL) interacting units to one-, two-, or three-unit RNA molecules in the ribozyme trimer, we constructed dimers, open-chain oligomers, and branched oligomers of ribozyme trimer units. One type of open-chain oligomer preferentially formed a closed tetramer containing 12 component RNAs to provide 12 ribozyme units. We also observed large assembly of ribozyme trimers, which reached 1000 nm in size.

12.
Nat Prod Rep ; 39(12): 2215-2230, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36017693

RESUMO

Covering: up to the end of 2022Microorganisms are exceptional sources of a wide array of unique natural products and play a significant role in drug discovery. During the golden era, several life-saving antibiotics and anticancer agents were isolated from microbes; moreover, they are still widely used. However, difficulties in the isolation methods and repeated discoveries of the same molecules have caused a setback in the past. Artificial intelligence (AI) has had a profound impact on various research fields, and its application allows the effective performance of data analyses and predictions. With the advances in omics, it is possible to obtain a wealth of information for the identification, isolation, and target prediction of secondary metabolites. In this review, we discuss drug discovery based on natural products from microorganisms with the help of AI and machine learning.


Assuntos
Antineoplásicos , Produtos Biológicos , Inteligência Artificial , Descoberta de Drogas/métodos , Aprendizado de Máquina , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Antineoplásicos/metabolismo
13.
Cancer Sci ; 113(7): 2352-2367, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35396773

RESUMO

Renal cell carcinoma with Xp11.2 translocation involving the TFE3 gene (TFE3-RCC) is a recently identified subset of RCC with unique morphology and clinical presentation. The chimeric PRCC-TFE3 protein produced by Xp11.2 translocation has been shown to transcriptionally activate its downstream target genes that play important roles in carcinogenesis and tumor development of TFE3-RCC. However, the underlying molecular mechanisms remain poorly understood. Here we show that in TFE3-RCC cells, PRCC-TFE3 controls heme oxygenase 1 (HMOX1) expression to confer chemoresistance. Inhibition of HMOX1 sensitized the PRCC-TFE3 expressing cells to genotoxic reagents. We screened for a novel chlorambucil-polyamide conjugate (Chb) to target PRCC-TFE3-dependent transcription, and identified Chb16 as a PRCC-TFE3-dependent transcriptional inhibitor of HMOX1 expression. Treatment of the patient-derived cancer cells with Chb16 exhibited senescence and growth arrest, and increased sensitivity of the TFE3-RCC cells to the genotoxic reagent etoposide. Thus, our data showed that the TFE3-RCC cells acquired chemoresistance through HMOX1 expression and that inhibition of HMOX1 by Chb16 may be an effective therapeutic strategy for TFE3-RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Clorambucila/farmacologia , Cromossomos Humanos X , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Nylons , Translocação Genética
14.
Cancer Sci ; 113(2): 529-539, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34902205

RESUMO

The emergence of tyrosine kinase inhibitors as part of a front-line treatment has greatly improved the clinical outcome of the patients with Ph+ acute lymphoblastic leukemia (ALL). However, a portion of them still become refractory to the therapy mainly through acquiring mutations in the BCR-ABL1 gene, necessitating a novel strategy to treat tyrosine kinase inhibitor (TKI)-resistant Ph+ ALL cases. In this report, we show evidence that RUNX1 transcription factor stringently controls the expression of BCR-ABL1, which can strategically be targeted by our novel RUNX inhibitor, Chb-M'. Through a series of in vitro experiments, we identified that RUNX1 binds to the promoter of BCR and directly transactivates BCR-ABL1 expression in Ph+ ALL cell lines. These cells showed significantly reduced expression of BCR-ABL1 with suppressed proliferation upon RUNX1 knockdown. Moreover, treatment with Chb-M' consistently downregulated the expression of BCR-ABL1 in these cells and this drug was highly effective even in an imatinib-resistant Ph+ ALL cell line. In good agreement with these findings, forced expression of BCR-ABL1 in these cells conferred relative resistance to Chb-M'. In addition, in vivo experiments with the Ph+ ALL patient-derived xenograft cells showed similar results. In summary, targeting RUNX1 therapeutically in Ph+ ALL cells may lead to overcoming TKI resistance through the transcriptional regulation of BCR-ABL1. Chb-M' could be a novel drug for patients with TKI-resistant refractory Ph+ ALL.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas de Fusão bcr-abl/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animais , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/genética , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mesilato de Imatinib/farmacologia , Camundongos , Mutação , Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Inibidores de Proteínas Quinases/farmacologia
15.
Anal Chem ; 94(48): 16927-16935, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36377840

RESUMO

Streptavidin-fluorescent proteins (SA-FPs) are a versatile tool to visualize a broad range of biochemical applications on a fluorescence microscope. Although the avidin-biotin interaction is widely used, the use of SA-FPs has not been applied to single-molecule DNA visualization. Here, we constructed 12 bright SA-FPs for DNA staining or labeling reagents. To date, 810 FPs are available, many of which are brighter than organic dyes. In this study, 12 bright FPs were selected to construct SA-FP plasmids covering green to red colors. Their brightness ranges from 40 to 165 mM-1 cm-1. Moreover, SA-FP is brighter than FP itself because streptavidin forms a tetramer complex; thus, four FPs are in a single complex. In addition, FPs often form a dimer or a tetramer, resulting in multiple FPs in a single spot on a microscopic image. This feature is advantageous because multiple fluorescent ß-barrels on a single biotin tag provide enough brightness to be easily visualized by epifluorescence microscopy. Using SA-FPs, we visualized DNA backbones, nickase-based optical mapping, and AT-frequency profiling. Finally, we demonstrated the combination of nickase-based optical mapping using SA-FP and AT-frequency profiling.


Assuntos
Biotina , DNA , Estreptavidina , Proteínas Luminescentes/química , DNA/genética , Corantes , Desoxirribonuclease I
16.
Biochem Biophys Res Commun ; 620: 150-157, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35792512

RESUMO

Malignancy of medulloblastoma depends on its molecular classification. Sonic Hedgehog (SHH)-type medulloblastoma with p53 mutation was recognized as one of the most aggressive types of tumors. We developed a novel drug, chlorambucil-conjugated PI-polyamides (Chb-M'), which was designed to compete with the RUNX consensus DNA-binding site. Chb-M' specifically recognizes this consensus sequence and alkylates it to inhibit the RUNX transcriptional activity. In-silico analysis showed all the RUNX families were upregulated in the SHH-type medulloblastoma. Thus, we tested the anti-tumor effects of Chb-M' in vitro and in vivo using Daoy cell lines, which belong to SHH with p53 mutation. Chb-M' inhibited tumor growth of Daoy cells by inducing apoptosis. The same inhibitory effect was also observed by knocking down of RUNX1 or RUNX2, but not RUNX3. Apoptosis array analysis showed that Chb-M' treatment induced phosphorylation of p53 serine 15 residues. In a subcutaneous tumor model, intratumoral injection of Chb-M' induced tumor growth retardation. Chb-M' mediated inhibition of RUNX1 and RUNX2 can be a novel therapeutic strategy for SHH-type medulloblastoma with p53 mutation.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Clorambucila/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Mutação , Nylons/química , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
17.
Chembiochem ; 23(12): e202200222, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35438834

RESUMO

Among various kinds of fluorine-substituted biomolecules, 2-fluoroadenine (2FA) and its derivatives have been actively investigated as therapeutic reagents, radio-sensitizers, and 19 F NMR probes. In spite of their excellent properties, DNA containing 2FA has not been studied well. For fundamental understanding and future applications to the development of functional nucleic acids, we characterized 2FA-containing oligonucleotides for canonical right-handed DNA duplex, G-quadruplex, and i-motif structures. Properties of 2FA were similar to native adenine due to the small size of the fluorine atom, but it showed unique features caused by high electronegativity. This work provides useful information for future application of 2FA-modified DNA.


Assuntos
Flúor , Quadruplex G , DNA/química , Desoxiadenosinas , Flúor/química , Conformação de Ácido Nucleico , Oligonucleotídeos/química
18.
Chembiochem ; 23(6): e202100446, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-34664334

RESUMO

At the cellular level, numerous nanocues guide the cells to adhere, interact, proliferate, differentiate, etc. Understanding and manipulating the cellular functions in vitro, necessitates the elucidation of these nanocues provided to the cells by the extracellular matrix (ECM), neighbouring cells or in the form of ligands. DNA nanotechnology is a biocompatible, flexible and a promising molecular level toolkit for mimicking cell-cell and cell-matrix interactions. In this review, we summarize various advances in cell-matrix, cell-cell and cell receptor-ligand interactions using DNA nanotechnology as a tool. We also provide a brief outlook on the current challenges and the future potentials of these DNA-based nanostructures so as to inspire novel innovations in the field.


Assuntos
Biomimética , Nanoestruturas , Comunicação Celular , DNA/química , Nanoestruturas/química , Nanotecnologia
19.
Chembiochem ; 23(14): e202200124, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35599232

RESUMO

Pyrrole-imidazole polyamides (PIPs) bind to double-stranded DNA (dsDNA) with varied sequence selectivity. We synthesized linear PIPs that can bind to narrow minor grooves of polypurine/polypyrimidine sequences and target long recognition sequences but have lower molecular weights than commonly used hairpin PIPs. We modified the N-terminus of linear PIPs using several groups, including ß-alanine extension and acetyl capping. Melting curve analysis of dsDNA demonstrated that cationic modifications improved the binding affinity of the PIPs to the targeted dsDNA. In addition, circular dichroism assays revealed the characteristic spectra depending on the binding stoichiometry of the N-cationic linear PIP and dsDNA (1 : 1, monomeric; 2 : 1, dimeric). Surface plasmon resonance assays confirmed the high binding affinities of linear PIPs. These findings may aid in the design of effective linear PIPs.


Assuntos
Nylons , Pirróis , Sequência de Bases , Cátions , DNA/química , Imidazóis/química , Nylons/química , Pirróis/química , Ressonância de Plasmônio de Superfície
20.
Chembiochem ; 23(6): e202100573, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35088928

RESUMO

The modular architecture of naturally occurring ribozymes makes them a promising class of structural platform for the design and assembly of three-dimensional (3D) RNA nanostructures, into which the catalytic ability of the platform ribozyme can be installed. We have constructed and analyzed RNA nanostructures with polygonal-shaped (closed) ribozyme oligomers by assembling unit RNAs derived from the Tetrahymena group I intron with a typical modular architecture. In this study, we dimerized ribozyme trimers with a triangular shape by introducing three pillar units. The resulting double-decker nanostructures containing six ribozyme units were characterized biochemically and their structures were observed by atomic force microscopy. The double-decker hexamers exhibited higher catalytic activity than the parent ribozyme trimers.


Assuntos
Nanoestruturas , RNA Catalítico , Tetrahymena , Íntrons , Nanoestruturas/química , Conformação de Ácido Nucleico , RNA/química , RNA Catalítico/metabolismo , Tetrahymena/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA