Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 194(12): 6024-34, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25948816

RESUMO

Neutrophils are key effector cells of the innate immune response to pathogenic bacteria, but excessive neutrophilic inflammation can be associated with bystander tissue damage. The mechanisms responsible for neutrophil recruitment to the lungs during bacterial pneumonia are poorly defined. In this study, we focus on the potential role of the major high-affinity thrombin receptor, proteinase-activated receptor 1 (PAR-1), during the development of pneumonia to the common lung pathogen Streptococcus pneumoniae. Our studies demonstrate that neutrophils were indispensable for controlling S. pneumoniae outgrowth but contributed to alveolar barrier disruption. We further report that intra-alveolar coagulation (bronchoalveolar lavage fluid thrombin-antithrombin complex levels) and PAR-1 immunostaining were increased in this model of bacterial lung infection. Functional studies using the most clinically advanced PAR-1 antagonist, SCH530348, revealed a key contribution for PAR-1 signaling in influencing neutrophil recruitment to lung airspaces in response to both an invasive and noninvasive strain of S. pneumoniae (D39 and EF3030) but that PAR-1 antagonism did not impair the ability of the host to control bacterial outgrowth. PAR-1 antagonist treatment significantly decreased pulmonary levels of IL-1ß, CXCL1, CCL2, and CCL7 and attenuated alveolar leak. Ab neutralization studies further demonstrated a nonredundant role for IL-1ß, CXCL1, and CCL7 in mediating neutrophil recruitment in response to S. pneumoniae infection. Taken together, these data demonstrate a key role for PAR-1 during S. pneumoniae lung infection that is mediated, at least in part, by influencing multiple downstream inflammatory mediators.


Assuntos
Neutrófilos/imunologia , Neutrófilos/metabolismo , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/metabolismo , Receptor PAR-1/metabolismo , Animais , Coagulação Sanguínea , Líquido da Lavagem Broncoalveolar/imunologia , Quimiocinas/metabolismo , Quimiotaxia/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno/imunologia , Mediadores da Inflamação/metabolismo , Camundongos , Permeabilidade , Pneumonia Bacteriana/sangue , Pneumonia Bacteriana/patologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/patologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/microbiologia , Alvéolos Pulmonares/patologia , Receptor PAR-1/antagonistas & inibidores , Streptococcus pneumoniae/imunologia
2.
Thorax ; 71(8): 701-11, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27103349

RESUMO

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is the most rapidly progressive and fatal of all fibrotic conditions with no curative therapies. Common pathomechanisms between IPF and cancer are increasingly recognised, including dysfunctional pan-PI3 kinase (PI3K) signalling as a driver of aberrant proliferative responses. GSK2126458 is a novel, potent, PI3K/mammalian target of rapamycin (mTOR) inhibitor which has recently completed phase I trials in the oncology setting. Our aim was to establish a scientific and dosing framework for PI3K inhibition with this agent in IPF at a clinically developable dose. METHODS: We explored evidence for pathway signalling in IPF lung tissue and examined the potency of GSK2126458 in fibroblast functional assays and precision-cut IPF lung tissue. We further explored the potential of IPF patient-derived bronchoalveolar lavage (BAL) cells to serve as pharmacodynamic biosensors to monitor GSK2126458 target engagement within the lung. RESULTS: We provide evidence for PI3K pathway activation in fibrotic foci, the cardinal lesions in IPF. GSK2126458 inhibited PI3K signalling and functional responses in IPF-derived lung fibroblasts, inhibiting Akt phosphorylation in IPF lung tissue and BAL derived cells with comparable potency. Integration of these data with GSK2126458 pharmacokinetic data from clinical trials in cancer enabled modelling of an optimal dosing regimen for patients with IPF. CONCLUSIONS: Our data define PI3K as a promising therapeutic target in IPF and provide a scientific and dosing framework for progressing GSK2126458 to clinical testing in this disease setting. A proof-of-mechanism trial of this agent is currently underway. TRIAL REGISTRATION NUMBER: NCT01725139, pre-clinical.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Quinolinas/uso terapêutico , Sulfonamidas/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proliferação de Células , Ensaios Clínicos como Assunto , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/patologia , Piridazinas , Transdução de Sinais , Resultado do Tratamento
3.
J Immunol ; 191(9): 4867-79, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24081992

RESUMO

Thymic stromal lymphopoietin (TSLP) recently has emerged as a key cytokine in the development of type 2 immune responses. Although traditionally associated with allergic inflammation, type 2 responses are also recognized to contribute to the pathogenesis of tissue fibrosis. However, the role of TSLP in the development of non-allergen-driven diseases, characterized by profibrotic type 2 immune phenotypes and excessive fibroblast activation, remains underexplored. Fibroblasts represent the key effector cells responsible for extracellular matrix production but additionally play important immunoregulatory roles, including choreographing immune cell recruitment through chemokine regulation. The aim of this study was to examine whether TSLP may be involved in the pathogenesis of a proto-typical fibrotic disease, idiopathic pulmonary fibrosis (IPF). We combined the immunohistochemical analysis of human IPF biopsy material with signaling studies by using cultured primary human lung fibroblasts and report for the first time, to our knowledge, that TSLP and its receptor (TSLPR) are highly upregulated in IPF. We further show that lung fibroblasts represent both a novel cellular source and target of TSLP and that TSLP induces fibroblast CCL2 release (via STAT3) and subsequent monocyte chemotaxis. These studies extend our understanding of TSLP as a master regulator of type 2 immune responses beyond that of allergic inflammatory conditions and suggest a novel role for TSLP in the context of chronic fibrotic lung disease.


Assuntos
Citocinas/metabolismo , Fibroblastos/imunologia , Fibrose/imunologia , Receptores de Citocinas/metabolismo , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiotaxia/imunologia , Citocinas/biossíntese , Humanos , Fibrose Pulmonar Idiopática/imunologia , Fibrose Pulmonar Idiopática/metabolismo , Inflamação/imunologia , Interleucina-7/imunologia , Interleucina-7/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Interferência de RNA , RNA Interferente Pequeno , Receptores de Citocinas/biossíntese , Fator de Transcrição STAT3/imunologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologia , Linfopoietina do Estroma do Timo
4.
Oncotarget ; 7(14): 18508-20, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26918344

RESUMO

Despite the availability of recently developed chemotherapy regimens, survival times for pancreatic cancer patients remain poor. These patients also respond poorly to immune checkpoint blockade therapies (anti-CTLA-4, anti-PD-L1, anti-PD-1), which suggests the presence of additional immunosuppressive mechanisms in the pancreatic tumour microenvironment (TME). CD40 agonist antibodies (αCD40) promote antigen presenting cell (APC) maturation and enhance macrophage tumouricidal activity, and may therefore alter the pancreatic TME to increase sensitivity to immune checkpoint blockade. Here, we test whether αCD40 transforms the TME in a mouse syngeneic orthotopic model of pancreatic cancer, to increase sensitivity to PD-L1 blockade. We found that whilst mice bearing orthotopic Pan02 tumours responded poorly to PD-L1 blockade, αCD40 improved overall survival. αCD40 transformed the TME, upregulating Th1 chemokines, increasing cytotoxic T cell infiltration and promoting formation of an immune cell-rich capsule separating the tumour from the normal pancreas. Furthermore, αCD40 drove systemic APC maturation, memory T cell expansion, and upregulated tumour and systemic PD-L1 expression. Combining αCD40 with PD-L1 blockade enhanced anti-tumour immunity and improved overall survival versus either monotherapy. These data provide further support for the potential of combining αCD40 with immune checkpoint blockade to promote anti-tumour immunity in pancreatic cancer.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Antígenos CD40/agonistas , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Microambiente Tumoral/imunologia , Animais , Anticorpos Monoclonais/imunologia , Antígeno B7-H1/imunologia , Antígenos CD40/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Transformação Celular Neoplásica , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/patologia , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA