Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cereb Cortex ; 30(2): 439-450, 2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-31163086

RESUMO

Despite accumulating evidence suggesting improvement in one's well-being as a result of meditation, little is known about if or how the brain and the periphery interact to produce these behavioral and mental changes. We hypothesize that meditation reflects changes in the neural representations of visceral activity, such as cardiac behavior, and investigated the integration of neural and visceral systems and the spontaneous whole brain spatiotemporal dynamics underlying traditional Tibetan Buddhist meditation. In a large cohort of long-term Tibetan Buddhist monk meditation practitioners, we found distinct transient modulations of the neural response to heartbeats in the default mode network (DMN), along with large-scale network reconfigurations in the gamma and theta bands of electroencephalography (EEG) activity induced by meditation. Additionally, temporal-frontal network connectivity in the EEG theta band was negatively correlated with the duration of meditation experience, and gamma oscillations were uniquely, directionally coupled to theta oscillations during meditation. Overall, these data suggest that the neural representation of cardiac activity in the DMN and large-scale spatiotemporal network integrations underlie the fundamental neural mechanism of meditation and further imply that meditation may utilize cortical plasticity, inducing both immediate and long-lasting changes in the intrinsic organization and activity of brain networks.


Assuntos
Encéfalo/fisiologia , Rede de Modo Padrão/fisiologia , Coração/fisiologia , Meditação , Adulto , Budismo , Eletrocardiografia , Ritmo Gama , Frequência Cardíaca , Humanos , Masculino , Ritmo Teta
2.
Front Hum Neurosci ; 16: 951591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061506

RESUMO

In a brain-computer interface (BCI) system, the testing of decoding algorithms, tasks, and their parameters is critical for optimizing performance. However, conducting human experiments can be costly and time-consuming, especially when investigating broad sets of parameters. Attempts to utilize previously collected data in offline analysis lack a co-adaptive feedback loop between the system and the user present online, limiting the applicability of the conclusions obtained to real-world uses of BCI. As such, a number of studies have attempted to address this cost-wise middle ground between offline and live experimentation with real-time neural activity simulators. We present one such system which generates motor imagery electroencephalography (EEG) via forward modeling and novel motor intention encoding models for conducting sensorimotor rhythm (SMR)-based continuous cursor control experiments in a closed-loop setting. We use the proposed simulator with 10 healthy human subjects to test the effect of three decoder and task parameters across 10 different values. Our simulated approach produces similar statistical conclusions to those produced during parallel, paired, online experimentation, but in 55% of the time. Notably, both online and simulated experimentation expressed a positive effect of cursor velocity limit on performance regardless of subject average performance, supporting the idea of relaxing constraints on cursor gain in online continuous cursor control. We demonstrate the merits of our closed-loop motor imagery EEG simulation, and provide an open-source framework to the community for closed-loop SMR-based BCI studies in the future. All code including the simulator have been made available on GitHub.

3.
J Neural Eng ; 18(4)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34038873

RESUMO

Objective. Noninvasive brain-computer interfaces (BCIs) assist paralyzed patients by providing access to the world without requiring surgical intervention. Prior work has suggested that EEG motor imagery based BCI can benefit from increased decoding accuracy through the application of deep learning methods, such as convolutional neural networks (CNNs).Approach. Here, we examine whether these improvements can generalize to practical scenarios such as continuous control tasks (as opposed to prior work reporting one classification per trial), whether valuable information remains latent outside of the motor cortex (as no prior work has compared full scalp coverage to motor only electrode montages), and the existing challenges to the practical implementation of deep-learning based continuous BCI control.Main results. We report that: (1) deep learning methods significantly increase offline performance compared to standard methods on an independent, large, and longitudinal online motor imagery BCI dataset with up to 4-classes and continuous 2D feedback; (2) our results suggest that a variety of neural biomarkers for BCI, including those outside the motor cortex, can be detected and used to improve performance through deep learning methods, and (3) tuning neural network output will be an important step in optimizing online BCI control, as we found the CNN models trained with full scalp EEG also significantly reduce the average trial length in a simulated online cursor control environment.Significance. This work demonstrates the benefits of CNNs classification during BCI control while providing evidence that electrode montage selection and the mapping of CNN output to device control will be important design choices in CNN based BCIs.


Assuntos
Interfaces Cérebro-Computador , Aprendizado Profundo , Algoritmos , Eletroencefalografia , Humanos , Imaginação , Redes Neurais de Computação
4.
J Neural Eng ; 17(6)2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33049729

RESUMO

Objective.The goal of this work is to identify the spatio-temporal facets of state-of-the-art electroencephalography (EEG)-based continuous neurorobotics that need to be addressed, prior to deployment in practical applications at home and in the clinic.Approach.Nine healthy human subjects participated in five sessions of one-dimensional (1D) horizontal (LR), 1D vertical (UD) and two-dimensional (2D) neural tracking from EEG. Users controlled a robotic arm and virtual cursor to continuously track a Gaussian random motion target using EEG sensorimotor rhythm modulation via motor imagery (MI) commands. Continuous control quality was analyzed in the temporal and spatial domains separately.Main results.Axis-specific errors during 2D tasks were significantly larger than during 1D counterparts. Fatigue rates were larger for control tasks with higher cognitive demand (LR, left- and right-hand MI) compared to those with lower cognitive demand (UD, both hands MI and rest). Additionally robotic arm and virtual cursor control exhibited equal tracking error during all tasks. However, further spatial error analysis of 2D control revealed a significant reduction in tracking quality that was dependent on the visual interference of the physical device. In fact, robotic arm performance was significantly greater than that of virtual cursor control when the users' sightlines were not obstructed.Significance.This work emphasizes the need for practical interfaces to be designed around real-world tasks of increased complexity. Here, the dependence of control quality on cognitive task demand emphasizes the need for decoders that facilitate the translation of 1D task mastery to 2D control. When device footprint was accounted for, the introduction of a physical robotic arm improved control quality, likely due to increased user engagement. In general, this work demonstrates the need to consider both the physical footprint of devices, the complexity of training tasks, and the synergy of control strategies during the development of neurorobotic control.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Eletroencefalografia/métodos , Mãos , Humanos , Imaginação
5.
R Soc Open Sci ; 5(2): 171395, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29515857

RESUMO

The mortality rate of many complex multicellular organisms increases with age, which suggests that net ageing damage is accumulative, despite remodelling processes. But how exactly do these little mishaps in the cellular level accumulate and spread to become a systemic catastrophe? To address this question we present experiments with synthetic tissues, an analytical model consistent with experiments, and a number of implications that follow the analytical model. Our theoretical framework describes how shape, curvature and density influences the propagation of failure in a tissue subjected to oxidative damage. We propose that ageing is an emergent property governed by interaction between cells, and that intercellular processes play a role that is at least as important as intracellular ones.

6.
IEEE Trans Biomed Eng ; 65(11): 2417-2427, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30281428

RESUMO

OBJECTIVE: While noninvasive electroenceph-alography (EEG) based brain-computer interfacing (BCI) has been successfully demonstrated in two-dimensional (2-D) control tasks, little work has been published regarding its extension to practical three-dimensional (3-D) control. METHODS: In this study, we developed a new BCI approach for 3-D control by combining a novel form of endogenous visuospatial attentional modulation, defined as overt spatial attention (OSA), and motor imagery (MI). RESULTS: OSA modulation was shown to provide comparable control to conventional MI modulation in both 1-D and 2-D tasks. Furthermore, this paper provides evidence for the functional independence of traditional MI and OSA, as well as an investigation into the simultaneous use of both. Using this newly proposed BCI paradigm, 16 participants successfully completed a 3-D eight-target control task. Nine of these subjects further demonstrated robust 3-D control in a 12-target task, significantly outperforming the information transfer rate achieved in the 1-D and 2-D control tasks (29.7 ± 1.6 b/min). CONCLUSION: These results strongly support the hypothesis that noninvasive EEG-based BCI can provide robust 3-D control through endogenous neural modulation in broader populations with limited training. SIGNIFICANCE: Through the combination of the two strategies (MI and OSA), a substantial portion of the recruited subjects were capable of robustly controlling a virtual cursor in 3-D space. The proposed novel approach could broaden the dimensionality of BCI control and shorten the training time.


Assuntos
Atenção/fisiologia , Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Imaginação/fisiologia , Imageamento Tridimensional/métodos , Processamento de Sinais Assistido por Computador , Adulto , Encéfalo/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA