Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Nano Lett ; 22(13): 5269-5276, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35770505

RESUMO

The intranasal administration of drugs allows an effective and noninvasive therapeutic action on the respiratory tract. In an era of rapidly increasing antimicrobial resistance, new approaches to the treatment of communicable diseases, especially lung infections, are urgently needed. Metal nanoparticles are recognized as a potential last-line defense, but limited data on the biosafety and nano/biointeractions preclude their use. Here, we quantitatively and qualitatively assess the fate and the potential risks associated with the exposure to a silver nanomaterial model (i.e., silver ultrasmall-in-nano architectures, AgNAs) after a single dose instillation. Our results highlight that the biodistribution profile and the nano/biointeractions are critically influenced by both the design of the nanomaterial and the chemical nature of the metal. Overall, our data suggest that the instillation of rationally engineered nanomaterials might be exploited to develop future treatments for (non)communicable diseases of the respiratory tract.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Nanopartículas Metálicas/uso terapêutico , Prata , Distribuição Tecidual
2.
Pharmacol Res ; 160: 105064, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32634582

RESUMO

N-Acylethanolamine acid amidase (NAAA) deactivates the endogenous peroxisome proliferator-activated receptor-α (PPAR-α) agonist palmitoylethanolamide (PEA). NAAA-regulated PEA signaling participates in the control of peripheral inflammation, but evidence suggests also a role in the modulation of neuroinflammatory pathologies such as multiple sclerosis (MS). Here we show that disease progression in the mouse experimental autoimmune encephalomyelitis (EAE) model of MS is accompanied by induction of NAAA expression in spinal cord, which in presymptomatic animals is confined to motor neurons and oligodendrocytes but, as EAE progresses, extends to microglia/macrophages and other cell types. As previously reported for NAAA inhibition, genetic NAAA deletion delayed disease onset and attenuated symptom intensity in female EAE mice, suggesting that accrued NAAA expression may contribute to pathology. To further delineate the role of NAAA in EAE, we generated a mouse line that selectively overexpresses the enzyme in macrophages, microglia and other monocyte-derived cells. Non-stimulated alveolar macrophages from these NaaaCD11b+ mice contain higher-than-normal levels of inducible nitric oxide synthase and display an activated morphology. Furthermore, intranasal lipopolysaccharide injections cause greater alveolar leukocyte accumulation in NaaaCD11b+ than in control mice. NaaaCD11b+ mice also display a more aggressive clinical response to EAE induction, compared to their wild-type littermates. The results identify NAAA as a critical control step in EAE pathogenesis, and point to this enzyme as a possible target for the treatment of MS.


Assuntos
Amidoidrolases/metabolismo , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/patologia , Esclerose Múltipla/enzimologia , Esclerose Múltipla/patologia , Amidoidrolases/genética , Animais , Progressão da Doença , Feminino , Lipopolissacarídeos , Macrófagos/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/enzimologia , Neurônios Motores/enzimologia , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Oligodendroglia/metabolismo , Medula Espinal/enzimologia
3.
Int J Mol Sci ; 21(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455600

RESUMO

The immune system and the central nervous system message each other to preserving central homeostasis. Both systems undergo changes during aging that determine central age-related defects. Ellagic acid (EA) is a natural product which is beneficial in both peripheral and central diseases, including aging. We analyzed the impact of the oral administration of a new oral ellagic acid micro-dispersion (EAm), that largely increased the EA solubility, in young and old mice. Oral EAm did not modify animal weight and behavioral skills in young and old mice, but significantly recovered changes in "ex-vivo, in vitro" parameters in old animals. Cortical noradrenaline exocytosis decreased in aged mice. EAm administration did not modify noradrenaline overflow in young animals, but recovered it in old mice. Furthermore, GFAP staining was increased in the cortex of aged mice, while IBA-1 and CD45 immunopositivities were unchanged when compared to young ones. EAm treatment significantly reduced CD45 signal in both young and old cortical lysates; it diminished GFAP immunopositivity in young mice, but failed to affect IBA-1 expression in both young and old animals. Finally, EAm treatment significantly reduced IL1beta expression in old mice. These results suggest that EAm is beneficial to aging and represents a nutraceutical ingredient for elders.


Assuntos
Envelhecimento/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Encéfalo/efeitos dos fármacos , Ácido Elágico/farmacologia , Administração Oral , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Anti-Inflamatórios/administração & dosagem , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Ácido Elágico/administração & dosagem , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Movimento
4.
Brain ; 141(9): 2772-2794, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30059965

RESUMO

Autism spectrum disorders are neurodevelopmental conditions with diverse aetiologies, all characterized by common core symptoms such as impaired social skills and communication, as well as repetitive behaviour. Cell adhesion molecules, receptor tyrosine kinases and associated downstream signalling have been strongly implicated in both neurodevelopment and autism spectrum disorders. We found that downregulation of the cell adhesion molecule NEGR1 or the receptor tyrosine kinase fibroblast growth factor receptor 2 (FGFR2) similarly affects neuronal migration and spine density during mouse cortical development in vivo and results in impaired core behaviours related to autism spectrum disorders. Mechanistically, NEGR1 physically interacts with FGFR2 and modulates FGFR2-dependent extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) signalling by decreasing FGFR2 degradation from the plasma membrane. Accordingly, FGFR2 overexpression rescues all defects due to Negr1 knockdown in vivo. Negr1 knockout mice present phenotypes similar to Negr1-downregulated animals. These data indicate that NEGR1 and FGFR2 cooperatively regulate cortical development and suggest a role for defective NEGR1-FGFR2 complex and convergent downstream ERK and AKT signalling in autism spectrum disorders.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Moléculas de Adesão Celular Neuronais/fisiologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia , Animais , Transtorno do Espectro Autista/metabolismo , Comportamento Animal/fisiologia , Moléculas de Adesão Celular Neuronais/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Córtex Cerebral/crescimento & desenvolvimento , Espinhas Dendríticas/fisiologia , Modelos Animais de Doenças , Regulação para Baixo , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia
5.
Proc Natl Acad Sci U S A ; 113(30): E4397-406, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27412859

RESUMO

The intracellular serine amidase, fatty acid amide hydrolase (FAAH), degrades a heterogeneous family of lipid-derived bioactive molecules that include amides of long-chain fatty acids with taurine [N-acyl-taurines (NATs)]. The physiological functions of the NATs are unknown. Here we show that genetic or pharmacological disruption of FAAH activity accelerates skin wound healing in mice and stimulates motogenesis of human keratinocytes and differentiation of human fibroblasts in primary cultures. Using untargeted and targeted lipidomics strategies, we identify two long-chain saturated NATs-N-tetracosanoyl-taurine [NAT(24:0)] and N-eicosanoyl-taurine [NAT(20:0)]-as primary substrates for FAAH in mouse skin, and show that the levels of these substances sharply decrease at the margins of a freshly inflicted wound to increase again as healing begins. Additionally, we demonstrate that local administration of synthetic NATs accelerates wound closure in mice and stimulates repair-associated responses in primary cultures of human keratinocytes and fibroblasts, through a mechanism that involves tyrosine phosphorylation of the epidermal growth factor receptor and an increase in intracellular calcium levels, under the permissive control of transient receptor potential vanilloid-1 receptors. The results point to FAAH-regulated NAT signaling as an unprecedented lipid-based mechanism of wound-healing control in mammalian skin, which might be targeted for chronic wound therapy.


Assuntos
Pele/metabolismo , Taurina/metabolismo , Cicatrização , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Recém-Nascido , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pele/efeitos dos fármacos , Pele/patologia , Especificidade por Substrato , Taurina/química , Taurina/farmacologia
6.
FASEB J ; 29(6): 2616-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25757568

RESUMO

The ability of nonsteroidal anti-inflammatory drugs (NSAIDs) to inhibit cyclooxygenase (Cox)-1 and Cox-2 underlies the therapeutic efficacy of these drugs, as well as their propensity to damage the gastrointestinal (GI) epithelium. This toxic action greatly limits the use of NSAIDs in inflammatory bowel disease (IBD) and other chronic pathologies. Fatty acid amide hydrolase (FAAH) degrades the endocannabinoid anandamide, which attenuates inflammation and promotes GI healing. Here, we describe the first class of systemically active agents that simultaneously inhibit FAAH, Cox-1, and Cox-2 with high potency and selectivity. The class prototype 4: (ARN2508) is potent at inhibiting FAAH, Cox-1, and Cox-2 (median inhibitory concentration: FAAH, 0.031 ± 0.002 µM; Cox-1, 0.012 ± 0.002 µM; and Cox-2, 0.43 ± 0.025 µM) but does not significantly interact with a panel of >100 off targets. After oral administration in mice, ARN2508 engages its intended targets and exerts profound therapeutic effects in models of intestinal inflammation. Unlike NSAIDs, ARN2508 causes no gastric damage and indeed protects the GI from NSAID-induced damage through a mechanism that requires FAAH inhibition. Multitarget FAAH/Cox blockade may provide a transformative approach to IBD and other pathologies in which FAAH and Cox are overactive.


Assuntos
Amidoidrolases/metabolismo , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Trato Gastrointestinal/enzimologia , Inflamação/enzimologia , Amidoidrolases/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Carragenina , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Gastroenteropatias/induzido quimicamente , Gastroenteropatias/enzimologia , Gastroenteropatias/prevenção & controle , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/patologia , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Intestinos/efeitos dos fármacos , Intestinos/enzimologia , Intestinos/patologia , Camundongos , Estrutura Molecular , Fenilcarbamatos/química , Fenilcarbamatos/farmacocinética , Fenilcarbamatos/farmacologia , Fenilpropionatos/química , Fenilpropionatos/farmacocinética , Fenilpropionatos/farmacologia , Fatores de Tempo , Resultado do Tratamento
7.
Angew Chem Int Ed Engl ; 55(37): 11193-11197, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27404798

RESUMO

Palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are endogenous lipid mediators that suppress inflammation. Their actions are terminated by the intracellular cysteine amidase, N-acylethanolamine acid amidase (NAAA). Even though NAAA may offer a new target for anti-inflammatory therapy, the lipid-like structures and reactive warheads of current NAAA inhibitors limit the use of these agents as oral drugs. A series of novel benzothiazole-piperazine derivatives that inhibit NAAA in a potent and selective manner by a non-covalent mechanism are described. A prototype member of this class (8) displays high oral bioavailability, access to the central nervous system (CNS), and strong activity in a mouse model of multiple sclerosis (MS). This compound exemplifies a second generation of non-covalent NAAA inhibitors that may be useful in the treatment of MS and other chronic CNS disorders.


Assuntos
Amidoidrolases/antagonistas & inibidores , Modelos Animais de Doenças , Endocanabinoides/farmacologia , Inibidores Enzimáticos/farmacologia , Etanolaminas/farmacologia , Esclerose Múltipla/tratamento farmacológico , Ácidos Oleicos/farmacologia , Ácidos Palmíticos/farmacologia , Administração Oral , Amidas , Amidoidrolases/metabolismo , Animais , Relação Dose-Resposta a Droga , Endocanabinoides/administração & dosagem , Endocanabinoides/química , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Etanolaminas/administração & dosagem , Etanolaminas/química , Camundongos , Estrutura Molecular , Esclerose Múltipla/metabolismo , Ácidos Oleicos/administração & dosagem , Ácidos Oleicos/química , Ácidos Palmíticos/administração & dosagem , Ácidos Palmíticos/química , Relação Estrutura-Atividade
8.
Angew Chem Int Ed Engl ; 54(2): 485-9, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25395373

RESUMO

The ceramides are a family of bioactive lipid-derived messengers involved in the control of cellular senescence, inflammation, and apoptosis. Ceramide hydrolysis by acid ceramidase (AC) stops the biological activity of these substances and influences survival and function of normal and neoplastic cells. Because of its central role in the ceramide metabolism, AC may offer a novel molecular target in disorders with dysfunctional ceramide-mediated signaling. Here, a class of benzoxazolone carboxamides is identified as the first potent and systemically active inhibitors of AC. Prototype members of this class inhibit AC with low nanomolar potency by covalent binding to the catalytic cysteine. Their metabolic stability and high in vivo efficacy suggest that these compounds may be used as probes to investigate the roles of ceramide in health and disease, and that this scaffold may represent a promising starting point for the development of novel therapeutic agents.


Assuntos
Amidas/química , Benzoxazóis/química , Ceramidases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia
9.
Angew Chem Int Ed Engl ; 54(5): 1578-82, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25504761

RESUMO

Cumulative evidence strongly supports that the amyloid and tau hypotheses are not mutually exclusive, but concomitantly contribute to neurodegeneration in Alzheimer's disease (AD). Thus, the development of multitarget drugs which are involved in both pathways might represent a promising therapeutic strategy. Accordingly, reported here in is the discovery of 6-amino-4-phenyl-3,4-dihydro-1,3,5-triazin-2(1H)-ones as the first class of molecules able to simultaneously modulate BACE-1 and GSK-3ß. Notably, one triazinone showed well-balanced in vitro potencies against the two enzymes (IC50 of (18.03±0.01) µM and (14.67±0.78) µM for BACE-1 and GSK-3ß, respectively). In cell-based assays, it displayed effective neuroprotective and neurogenic activities and no neurotoxicity. It also showed good brain permeability in a preliminary pharmacokinetic assessment in mice. Overall, triazinones might represent a promising starting point towards high quality lead compounds with an AD-modifying potential.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Inibidores Enzimáticos/química , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Triazinas/química , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Barreira Hematoencefálica/metabolismo , Domínio Catalítico , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Meia-Vida , Lipopolissacarídeos/toxicidade , Camundongos , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Simulação de Acoplamento Molecular , Óxido Nítrico Sintase Tipo II/metabolismo , Ligação Proteica , Ratos , Triazinas/metabolismo , Triazinas/farmacologia , Regulação para Cima/efeitos dos fármacos
10.
Cereb Cortex ; 23(9): 2179-89, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22791805

RESUMO

The metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, the only members of group I mGlu receptors, are implicated in synaptic plasticity and mechanisms of feedback control of glutamate release. They exhibit nearly complementary distributions throughout the central nervous system, well evident in the cerebellum, where mGlu1 receptor is most intensely expressed while mGlu5 receptor is not. Despite their different distribution, they show a similar subcellular localization and use common transducing pathways. We recently described the Grm1(crv4) mouse with motor coordination deficits and renal anomalies caused by a spontaneous mutation inactivating the mGlu1 receptor. To define the neuropathological mechanisms in these mice, we evaluated expression and function of the mGlu5 receptor in cerebral and cerebellar cortices. Western blot and immunofluorescence analyses showed mGlu5 receptor overexpression. Quantitative reverse transcriptase-polymerase chain reaction results indicated that the up-regulation is already evident at RNA level. Functional studies confirmed an enhanced glutamate release from cortical cerebral and cerebellar synaptosomes when compared with wild-type that is abolished by the mGlu5 receptor-specific inhibitor, 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP). Finally, acute MPEP treatment of Grm1(crv4/crv4) mice induced an evident although incomplete improvement of motor coordination, suggesting that mGlu5 receptors enhanced activity worsens, instead of improving, the motor-coordination defects in the Grm1(crv4/crv4) mice.


Assuntos
Encéfalo/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Receptor de Glutamato Metabotrópico 5/fisiologia , Receptores de Glutamato Metabotrópico/deficiência , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Receptor de Glutamato Metabotrópico 5/metabolismo , Sinaptossomos/fisiologia
11.
Int J Biol Macromol ; 257(Pt 2): 128560, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061505

RESUMO

Ureteral stents are among the most frequently used human implants, with urothelium trauma, blood clots, and bacterial colonization being their main reasons for failure. In this study, berberine-loaded zein (ZB) nanoparticles with high drug encapsulation efficiency (>90 %) were fabricated via electrospray on flat and 3D stainless steel structures. Physico-chemical characterization revealed that the ZB nanoparticles created a highly hydrophilic, antioxidant, and scratch-resistant continuous coating over the metal structure. Results showed that the drug release rate was faster at neutral pH (i.e., PBS pH 7.4) than in an artificial urine medium (pH 5.3) due to the different swelling behavior of the zein polymeric matrix. In vitro evaluation of ZB particles onto human dermal fibroblasts and blood cells demonstrated good cell proliferation and enhanced anti-thrombotic properties compared to bare stainless steel. The ability of the electrosprayed zein particles to resist bacterial adherence and proliferation was evaluated with Gram-negative (Escherichia coli) bacteria, showing high inhibition rates (-29 % and -46 % for empty and berberine-loaded particles, respectively) compared to the medical-grade metal substrates. Overall, the proposed composite coating fulfilled the requirements for ureteral applications, and can advance the development of innovative biocompatible, biodegradable, and antibacterial coatings for drug-eluting stents.


Assuntos
Berberina , Nanopartículas , Zeína , Humanos , Zeína/química , Aço Inoxidável , Antibacterianos/farmacologia , Stents , Nanopartículas/química , Metais
12.
Macromol Biosci ; 24(2): e2300349, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37800281

RESUMO

Diabetes is rising as one of the most diffused diseases of the century with the related urgent necessity to face its systemic and local effects on the patients, such as cardiovascular problems, degeneration of limbs, and dysfunction of the wound healing process. The diffusion of leg ulcers has been estimated to be 1.51 for 1000 population, and these non-resolved wounds can produce several social, economic, and mental health issues in diabetic patients. At the same time, these people experience neuropathic pain that causes morbidity and a further decrease in their quality of life. Here, a new study is presented where asodium alginate/Polyvinylpyrrolidone-Iodine complex (PVPI)-based wound dressing is combined with the Frequency Rhythmic Electrical Modulation System (FREMS) technology, an established medical device for the treatment of neuropathic pain and diabetic ulcers. The produced Alginate/PVPI-based films are characterized in terms of morphology, chemistry, wettability, bio-/hemo-compatibility, and clotting capacity. Next, the Alginate/PVPI-based films are used together with FREMS technology in diabetic mice models, and synergism of their action in the wound closure rate and anti-inflammatory properties is found. Hence, how the combination of electrical neurostimulation devices and advanced wound dressings can be a new approach to improve chronic wound treatment is demonstrated.


Assuntos
Diabetes Mellitus Experimental , Neuralgia , Humanos , Animais , Camundongos , Povidona-Iodo/química , Alginatos/química , Qualidade de Vida , Diabetes Mellitus Experimental/terapia
13.
Carbohydr Polym ; 333: 121981, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494233

RESUMO

In view of health and environmental concerns, together with the upcoming restrictive regulations on per- and polyfluoroalkyl substances (PFAS), less impactful materials must be explored for the hydrophobization of surfaces. Polysaccharides, and especially chitosan, are being explored for their desirable properties of film formation and ease of modification. We present a PFAS-free chitosan superhydrophobic coating for textiles deposited through a solvent-free method. By contact angle analysis and drop impact, we observe that the coating imparts hydrophobicity to the fabrics, reaching superhydrophobicty (θA = 151°, θR = 136°) with increased amount of coating (from 1.6 g/cm2). This effect is obtained by the combination of chemical water repellency of the modified chitosan and the nano- and micro-roughness, assessed by SEM analysis. We perform a comprehensive study on the durability of the coatings, showing good results especially for acidic soaking where the hydrophobicity is maintained until the 8th cycle of washing. We assess the degradation of the coating by a TGA-IR investigation to define the compounds released with thermal degradation, and we confirm the coating's biodegradability by biochemical oxygen consumption. Finally, we demonstrate its biocompatibility on keratinocytes (HaCaT cell line) and fibroblasts (HFF-1 cell line), confirming that the coating is safe for human skin cells.


Assuntos
Quitosana , Humanos , Interações Hidrofóbicas e Hidrofílicas , Solventes , Fibroblastos , Ácidos
14.
Heliyon ; 10(4): e26042, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390062

RESUMO

In this paper, we present a new generation of omnidirectional automated guided vehicles (omniagv) used for transporting materials within a manufacturing factory with the ability to navigate autonomously and intelligently by interacting with the environment, including people and other entities. This robot has to be integrated into the operating environment without significant changes to the current facilities or heavy redefinitions of the logistics processes already running. For this purpose, different vision-based systems and advanced methods in mobile and cognitive robotics are developed and integrated. In this context, vision and perception are key factors. Different developed modules are in charge of supporting the robot during its navigation in the environment. Specifically, the localization module provides information about the robot pose by using visual odometry and wheel odometry systems. The obstacle avoidance module can detect obstacles and recognize some object classes for adaptive navigation. Finally, the tag detection module aids the robot during the picking phase of carts and provides information for global localization. The smart integration of vision and perception is paramount for effectively using the robot in the industrial context. Extensive qualitative and quantitative results prove the capability and effectiveness of the proposed AGV to navigate in the considered industrial environment.

15.
J Med Chem ; 67(12): 10401-10424, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38866385

RESUMO

We previously reported trisubstituted pyrimidine lead compounds, namely, ARN22089 and ARN25062, which block the interaction between CDC42 with its specific downstream effector, a PAK protein. This interaction is crucial for the progression of multiple tumor types. Such inhibitors showed anticancer efficacy in vivo. Here, we describe a second class of CDC42 inhibitors with favorable drug-like properties. Out of the 25 compounds here reported, compound 15 (ARN25499) stands out as the best lead compound with an improved pharmacokinetic profile, increased bioavailability, and efficacy in an in vivo PDX tumor mouse model. Our results indicate that these CDC42 inhibitors represent a promising chemical class toward the discovery of anticancer drugs, with ARN25499 as an additional lead candidate for preclinical development.


Assuntos
Antineoplásicos , Proteína cdc42 de Ligação ao GTP , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/química , Humanos , Camundongos , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteína cdc42 de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Descoberta de Drogas , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto , Pirimidinas/farmacocinética , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Feminino
16.
J Cyst Fibros ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38789319

RESUMO

BACKGROUND: We recently demonstrated that 48 h exposure of primary human bronchial epithelial (hBE) cells, obtained from both CF (F508del homozygous) and non-CF subjects, to the triple drug combination Elexacaftor/Tezacaftor/Ivacaftor (ETI) results in a CFTR genotype-independent modulation of the de novo synthethic pathway of sphingolipids, with an accumulation of dihydroceramides (dHCer). Since dHCer are converted into ceramides (Cer) by the action of a delta-4 sphingolipid desaturase (DEGS) enzyme, we aimed to better understand this off-target effect of ETI (i.e., not related to CFTR rescue) METHODS: hBE cells, both F508del and wild-type, were cultured to create fully differentiated bronchial epithelia. We analyzed Cer and dHCer using an LC-MS based method previously developed by our lab. DEGS expression levels in differentiated hBE cells lysates were quantified by western blot analysis. RESULTS: We demonstrated that 1) dHCer accumulate in hBE with time following prolonged ETI exposure, that 2) similar inhibition occurs in wild-type primary human hepatocytes and that 3) this does not result in an alteration of DEGS expression. We then proved that 4) ETI is a direct inhibitor of DEGS, that 5) Tezacaftor is the molecule responsible for this effect, that 6) the inhibition is concentration dependent. Finally, after repeated oral administration of ETI to naïve, non-CF, mice, we observed a slight accumulation of dHCer in the brain. CONCLUSIONS: We believe that further investigations on Tezacaftor should be envisaged, particularly for the use of ETI during pregnancy, breastfeeding and in the early stages of development. DEGS dysfunction and dHCer accumulation causes impairment in the development of the nervous system, due to a derangement in myelin formation and maintenance.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38603548

RESUMO

In this study, hydrogels were produced using a Schiff base reaction between two hyaluronic acid derivatives: one containing aldehyde groups (HA-Ald) and the other holding a diethylenetriamine with terminal amino groups (HA-DETA). The DETA portion promotes the in situ growth, complexation, and stabilization of silver nanoparticles (AgNPs), eliminating the need for external reducing agents. The reaction between HA-DETA and HA-Ald leads to the formation of imine bonds, which results in dynamically pH-responsive cross-linking. While the DETA capping ability helped in embedding the AgNPs, the on/off pH environmental responsivity of the hydrogel allows for a controlled and on-demand release of the drug, mainly when bacterial infections cause pH variation of the wound bed. The injectable hydrogels resulted in being highly compatible in contact with blood red cells, fibroblasts, and keratinocytes and capable of having a proliferative effect on an in vitro wound scratch model. The pH-responsive hydrogels showed proper antibacterial activity againstPseudomonas aeruginosaandStaphylococcus aureus, common bacterial strains presented in wound infections. Finally, in vivo wound model studies demonstrated an overall speeding up in the wound healing rate and advanced wound conditions in the experimental group treated with the hydrogels compared to control samples.

18.
J Neurosci ; 32(48): 17143-54, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23197707

RESUMO

Abnormalities of synaptic transmission and plasticity in the hippocampus represent an integral part of the altered programming triggered by early life stress. Prenatally restraint stressed (PRS) rats develop long-lasting biochemical and behavioral changes, which are the expression of an anxious/depressive-like phenotype. We report here that PRS rats showed a selective impairment of depolarization- or kainate-stimulated glutamate and [(3)H]d-aspartate release in the ventral hippocampus, a region encoding memories related to stress and emotions. GABA release was unaffected in PRS rats. As a consequence of reduced glutamate release, PRS rats were also highly resistant to kainate-induced seizures. Abnormalities of glutamate release were associated with large reductions in the levels of synaptic vesicle-related proteins, such as VAMP (synaptobrevin), syntaxin-1, synaptophysin, synapsin Ia/b and IIa, munc-18, and Rab3A in the ventral hippocampus of PRS rats. Anxiety-like behavior in male PRS (and control) rats was inversely related to the extent of depolarization-evoked glutamate release in the ventral hippocampus. A causal relationship between anxiety-like behavior and reduction in glutamate release was demonstrated using a mixture of the mGlu2/3 receptor antagonist, LY341495, and the GABA(B) receptor antagonist, CGP52432, which was shown to amplify depolarization-evoked [(3)H]d-aspartate release in the ventral hippocampus. Bilateral microinfusion of CGP52432 plus LY341495 in the ventral hippocampus abolished anxiety-like behavior in PRS rats. These findings indicate that an impairment of glutamate release in the ventral hippocampus is a key component of the neuroplastic program induced by PRS, and that strategies aimed at enhancing glutamate release in the ventral hippocampus correct the "anxious phenotype" caused by early life stress.


Assuntos
Ansiedade/metabolismo , Comportamento Animal/fisiologia , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Estresse Psicológico/metabolismo , Aminoácidos/farmacologia , Animais , Benzilaminas/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Hipocampo/efeitos dos fármacos , Ácido Caínico , Masculino , Proteínas Munc18/metabolismo , Ácidos Fosfínicos/farmacologia , Gravidez , Proteínas R-SNARE/metabolismo , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/metabolismo , Sinapsinas/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Sinaptofisina/metabolismo , Sintaxina 1/metabolismo , Xantenos/farmacologia , Proteína rab3A de Ligação ao GTP/metabolismo
19.
Neurobiol Dis ; 55: 110-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23454193

RESUMO

HIV-1 associated neurocognitive disorders (HAND) are a major complication of HIV-1 infection. The mechanism(s) underlying HAND are not completely understood but, based on in vitro studies, the HIV-1 Tat protein may play an important role. In this study, the effect of prolonged exposure to endogenously produced Tat in the brain was investigated using a tat-transgenic (TT) mouse model constitutively expressing the HIV-1 tat gene. We found that stimulus-evoked glutamate exocytosis in the hippocampus and cortex was significantly increased in TT as compared with wild-type control (CC) mice, while GABA exocytosis was unchanged in the hippocampus and decreased in the cortex. This suggests that Tat generates a latent hyper-excitability state, which favors the detrimental effects of neurotoxic and/or excitotoxic agents. To challenge this idea, TT mice were tested for susceptibility to kainate-induced seizures and neurodegeneration, and found to exhibit significantly greater responses to the convulsant agent than CC mice. These results support the concept that constitutive expression of tat in the brain generates a latent excitatory state, which may increase the negative effects of damaging insults. These events may play a key role in the development of HAND.


Assuntos
Encéfalo/patologia , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/virologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/virologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Produtos do Gene tat/farmacologia , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos Transgênicos , Neurotransmissores/metabolismo , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Estatísticas não Paramétricas , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
20.
ACS Appl Bio Mater ; 6(8): 3103-3116, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37493659

RESUMO

Natural polymers from organic wastes have gained increasing attention in the biomedical field as resourceful second raw materials for the design of biomedical devices which can perform a specific bioactive function and eventually degrade without liberating toxic residues in the surroundings. In this context, patches and bandages, that need to support the skin wound healing process for a short amount of time to be then discarded, certainly constitute good candidates in our quest for a more environmentally friendly management. Here, we propose a plant-based microfibrous scaffold, loaded with vitamin C (VitC), a bioactive molecule which acts as a protecting agent against UV damages and as a wound healing promoter. Fibers were fabricated via electrospinning from various zein/pectin formulations, and subsequently cross-linked in the presence of Ca2+ to confer them a hydrogel-like behavior, which we exploited to tune both the drug release profile and the scaffold degradation. A comprehensive characterization of the physico-chemical properties of the zein/pectin/VitC scaffolds, either pristine or cross-linked, has been carried out, together with the bioactivity assessment with two representative skin cell populations (human dermal fibroblast cells and skin keratinocytes, HaCaT cells). Interestingly, col-1a gene expression of dermal fibroblasts increased after 3 days of growth in the presence of the microfiber extraction media, indicating that the released VitC was able to stimulate collagen mRNA production overtime. Antioxidant activity was analyzed on HaCaT cells via DCFH-DA assay, highlighting a fluorescence intensity decrease proportional to the amount of loaded VitC (down to 50 and 30%), confirming the protective effect of the matrices against oxidative stress. Finally, the most performing samples were selected for the in vivo test on a skin UVB-burn mouse model, where our constructs demonstrated to significantly reduce the inflammatory cytokines expression in the injured area (50% lower than the control), thus constituting a promising, environmentally sustainable alternative to skin patches.


Assuntos
Queimaduras , Animais , Humanos , Masculino , Camundongos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ácido Ascórbico/metabolismo , Materiais Biocompatíveis , Queimaduras/tratamento farmacológico , Linhagem Celular , Hidrogéis , Queratinócitos , Camundongos Endogâmicos C57BL , Cicatrização , Zeína/química , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA