Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Biol ; 218(Pt 19): 3023-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26254323

RESUMO

Transient receptor potential ankyrin subtype 1 (TRPA1) channels are chemosensitive to compounds such as allyl isothiocyanate (AITC, the active component of mustard oil) and other reactive electrophiles and may also be thermodetectors in many animal phyla. In this study, we provide the first pharmacological evidence of a putative TRPA1-like channel in the medicinal leech. The leech's polymodal nociceptive neuron was activated by both peripheral and central application of the TRPA1 agonist AITC in a concentration-dependent manner. Responses to AITC were inhibited by the selective TRPA1 antagonist HC030031, but also by the TRPV1 antagonist SB366791. Other TRPA1 activators - N-methylmaleimide (NMM) and cinnamaldehyde (CIN) - also activated this nociceptive neuron, although HC030031 only inhibited the effects of NMM. The polymodal nociceptive neurons responded to moderately cold thermal stimuli (<17°C) and these responses were blocked by HC030031. AITC sensitivity was also found in the pressure-sensitive sensory neurons and was blocked by HC030031, but not by SB366791. AITC elicited a nocifensive withdrawal of the posterior sucker in a concentration-dependent manner that could be attenuated with HC030031. Peripheral application of AITC in vivo also produced swimming-like behavior that was attenuated by HC030031. These results suggest the presence of a TRPA1-like channel in the medicinal leech nervous system that responds to cold temperatures and may interact with the leech TRPV-like channel.


Assuntos
Hirudo medicinalis/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Canais de Cátion TRPV/antagonistas & inibidores , Acetanilidas/farmacologia , Acroleína/análogos & derivados , Acroleína/farmacologia , Anilidas/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Cinamatos/farmacologia , Temperatura Baixa , Hirudo medicinalis/fisiologia , Isotiocianatos/farmacologia , Maleimidas/farmacologia , Nociceptores/fisiologia , Purinas/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Canais de Cátion TRPV/fisiologia
2.
J Exp Biol ; 217(Pt 23): 4167-73, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25324339

RESUMO

Transient receptor potential vanilloid (TRPV) channels are found throughout the animal kingdom, where they play an important role in sensory transduction. In this study, we combined physiological studies with in vivo behavioral experiments to examine the presence of a putative TRPV-like receptor in the medicinal leech, building upon earlier studies in this lophotrochozoan invertebrate. The leech polymodal nociceptive neuron was activated by both peripheral and central application of the TRPV1-activator capsaicin in a concentration-dependent manner, with 100 µmol l(-1) being the lowest effective concentration. Responses to capsaicin were inhibited by the selective TRPV1 antagonist SB366791. The polymodal nociceptive neuron also responded to noxious thermal stimuli (>40°C), and this response was also blocked by SB366791. Capsaicin sensitivity was selective to the polymodal nociceptor with no direct response being elicited in the mechanical nociceptive neuron or in the non-nociceptive touch- or pressure-sensitive neurons. Capsaicin also elicited nocifensive behavioral responses (withdrawals and locomotion) in a concentration-dependent manner, and these behavioral responses were significantly attenuated with SB366791. These results suggest the presence of a capsaicin-sensitive TRPV-like channel in the medicinal leech central nervous system and are relevant to the evolution of nociceptive signaling.


Assuntos
Capsaicina/farmacologia , Hirudo medicinalis/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Canais de Cátion TRPV/antagonistas & inibidores , Anilidas/farmacologia , Animais , Capsaicina/metabolismo , Cinamatos/farmacologia , Relação Dose-Resposta a Droga , Hirudo medicinalis/fisiologia , Temperatura Alta , Nociceptores/fisiologia , Fármacos do Sistema Sensorial/metabolismo , Fármacos do Sistema Sensorial/farmacologia , Canais de Cátion TRPV/metabolismo
3.
Sci Rep ; 7(1): 5793, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724917

RESUMO

The endocannabinoid system is thought to modulate nociceptive signaling making it a potential therapeutic target for treating pain. However, there is evidence that endocannabinoids have both pro- and anti-nociceptive effects. In previous studies using Hirudo verbana (the medicinal leech), endocannabinoids were found to depress nociceptive synapses, but enhance non-nociceptive synapses. Here we examined whether endocannabinoids have similar bidirectional effects on behavioral responses to nociceptive vs. non-nociceptive stimuli in vivo. Hirudo were injected with either the 2-arachidonoylglycerol (2-AG) or anandamide and tested for changes in response to nociceptive and non-nociceptive stimuli. Both endocannabinoids enhanced responses to non-nociceptive stimuli and reduced responses to nociceptive stimuli. These pro- and anti-nociceptive effects were blocked by co-injection of a TRPV channel inhibitor, which are thought to function as an endocannabinoid receptor. In experiments to determine the effects of endocannabinoids on animals that had undergone injury-induced sensitization, 2-AG and anandamide diminished sensitization to nociceptive stimuli although the effects of 2-AG were longer lasting. Sensitized responses to non-nociceptive stimuli were unaffected 2-AG or anandamide. These results provide evidence that endocannabinoids can have opposing effects on nociceptive vs. non-nociceptive pathways and suggest that cannabinoid-based therapies may be more appropriate for treating pain disorders in which hyperalgesia and not allodynia is the primary symptom.


Assuntos
Comportamento Animal/efeitos dos fármacos , Endocanabinoides/administração & dosagem , Sanguessugas/fisiologia , Percepção/efeitos dos fármacos , Animais , Ácidos Araquidônicos/administração & dosagem , Glicerídeos/administração & dosagem , Injeções , Alcamidas Poli-Insaturadas/administração & dosagem
4.
Front Neurosci ; 11: 515, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28966574

RESUMO

Socially stressful environments induce a phenotypic dichotomy of coping measures for populations in response to a dominant aggressor and given a route of egress. This submission- (Stay) or escape-oriented (Escape) dichotomy represents individual decision-making under the stressful influence of hostile social environments. We utilized the Stress-Alternatives Model (SAM) to explore behavioral factors which might predict behavioral phenotype in rainbow trout. The SAM is a compartmentalized tank, with smaller and larger trout separated by an opaque divider until social interaction, and another divider occluding a safety zone, accessible by way of an escape route only large enough for the smaller fish. We hypothesized that distinctive behavioral responses during the first social interaction would indicate a predisposition for one of the behavioral phenotypes in the subsequent interactions. Surprisingly, increased amount or intensity of aggression received had no significant effect on promoting escape in test fish. In fact, during the first day of interaction, fish that turned toward their larger opponent during attack eventually learned to escape. Escaping fish also learn to monitor the patrolling behavior of aggressors, and eventually escape primarily when they are not being observed. Escape per se, was also predicted in trout exhibiting increased movements directed toward the escape route. By contrast, fish that consistently remained in the tank with the aggressor (Stay) showed significantly higher frequency of swimming in subordinate positions, at the top or the bottom of the water column, as well as sitting at the bottom. In addition, a corticotropin-releasing factor (CRF)-induced behavior, snap-shake, was also displayed in untreated fish during aggressive social interaction, and blocked by a CRF1 receptor antagonist. Especially prevalent among the Stay phenotype, snap-shake indicates indecision regarding escape-related behaviors. Snap-shake was also exhibited by fish of the Escape phenotype, showing a positive correlation with latency to escape. These results demonstrate adaptive responses to stress that reflect evolutionarily conserved stress neurocircuitry which may translate to psychological disorders and decision-making across vertebrate taxa.

5.
Physiol Behav ; 146: 86-97, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26066728

RESUMO

By creating the Visible Burrow System (VBS) Bob Blanchard found a way to study the interaction of genetics, physiology, environment, and adaptive significance in a model with broad validity. The VBS changed the way we think about anxiety and affective disorders by allowing the mechanisms which control them to be observed in a dynamic setting. Critically, Blanchard used the VBS and other models to show how behavioral systems like defense are dependent upon context and behavioral elements unique to the individual. Inspired by the VBS, we developed a Stress Alternatives Model (SAM) to further explore the multifaceted dynamics of the stress response with a dichotomous choice condition. Like the VBS, the SAM is a naturalistic model built upon risk assessment and defensive behavior, but with a choice of response: escape or submission to a large conspecific aggressor. The anxiety of novelty during the first escape must be weighed against fear of the aggressor, and a decision must be made. Both outcomes are adaptively significant, evidenced by a 50/50 split in outcome across several study systems. By manipulating the variables of the SAM, we show that a gradient of anxiety exists that spans the contextual settings of escaping an open field, escaping from aggression, and submitting to aggression. These findings correspond with increasing levels of corticosterone and increasing levels of NPS and BDNF in the central amygdala as the context changes.Whereas some anxiolytics were able to reduce the latency to escape for some animals, only with the potent anxiolytic drug antalarmin (CRF1R-blocker) and the anxiogenic drug yohimbine (α2 antagonist) were we able to reverse the outcome for a substantial proportion of individuals. Our findings promote a novel method for modeling anxiety, offering a distinction between low-and-high levels, and accounting for individual variability. The translational value of the VBS is immeasurable, and it guided us and many other researchers to seek potential clinical solutions through a deeper understanding of regional neurochemistry and gene expression in concert with an ecological behavioral model.


Assuntos
Ansiedade/fisiopatologia , Modelos Animais de Doenças , Comportamento Social , Estresse Psicológico/fisiopatologia , Animais , Humanos , Ratos , Truta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA