Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 64(1): 118-134, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34726825

RESUMO

Root architecture is one of the most important agronomic traits that determines rice crop yield. The primary root (PR) absorbs mineral nutrients and provides mechanical support; however, the molecular mechanisms of PR elongation remain unclear in rice. Here, the two loss-of-function T-DNA insertion mutants of root length regulator 4 (OsRLR4), osrlr4-1 and osrlr4-2 with longer PR, and three OsRLR4 overexpression lines, OE-OsRLR4-1/-2/-3 with shorter PR compared to the wild type/Hwayoung (WT/HY), were identified. OsRLR4 is one of five members of the PRAF subfamily of the regulator chromosome condensation 1 (RCC1) family. Phylogenetic analysis of OsRLR4 from wild and cultivated rice indicated that it is under selective sweeps, suggesting its potential role in domestication. OsRLR4 controls PR development by regulating auxin accumulation in the PR tip and thus the root apical meristem activity. A series of biochemical and genetic analyses demonstrated that OsRLR4 functions directly upstream of the auxin transporter OsAUX1. Moreover, OsRLR4 interacts with the TRITHORAX-like protein OsTrx1 to promote H3K4me3 deposition at the OsAUX1 promoter, thus altering its transcription level. This work provides insight into the cooperation of auxin and epigenetic modifications in regulating root architecture and provides a genetic resource for plant architecture breeding.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo
2.
Plant Mol Biol ; 103(4-5): 409-423, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32189187

RESUMO

Cotton fibers are initiated from the epidermal cells of the ovule before or on the day of anthesis. Gossypium arboreum SMA-4 mutant contains recessive mutation (sma-4(ha)) and has the phenotypes of fibreless seeds and glabrous stems. In this study, fine mapping and alternative splicing analysis indicated a nucleotide substitution (AG → AC) at splicing site in a homeodomain-leucine zipper IV family gene (GaHD1) might cause gene A3S (Alternative 3' splicing) mistake, suggested that GaHD1 was the candidate gene of sma-4(ha). Many genes related to the fiber initiation are identified to be differentially expressed in the mutant which could result in the blocked fiber initiation signals such as H2O2, or Ca in the mutant. Further comparative physiological analysis of H2O2 production and Ca2+ flux in the SMA-4 and wide type cotton confirmed that H2O2 and Ca were important fiber initiation signals and regulated by GaHD1. The in vitro ovule culture of the mutant with hormones recovered the fibered phenotype coupled with the restoration of these signals. Overexpressing of GaHD1 in Arabidopsis increased trichome densities on the sepal, leaf, and stem tissues while transient silencing of the GaHD1 gene in G. arboreum reduced the trichome densities. These phenotypes indicated that GaHD1 is the candidate gene of SMA-4 with a crucial role in acting upstream molecular switch of signal transductions for cotton trichome and fiber initiations.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Gossypium/fisiologia , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/metabolismo , Tricomas/crescimento & desenvolvimento , Processamento Alternativo , Sinalização do Cálcio , Mapeamento Cromossômico , Cromossomos de Plantas , Fibra de Algodão , Ligação Genética , Gossypium/genética , Mutação , Proteínas de Plantas/genética
3.
BMC Genomics ; 20(1): 381, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31096913

RESUMO

BACKGROUND: Salinization seriously threatens land use efficiency and crop yields across the world. Understanding the mechanisms plants use to protect against salt stress will help breeders develop salt-tolerant vegetable crops. Okra (Abelmoschus esculentus L.) is an important vegetable crop of the mallow family, which is now cultivated in warm regions worldwide. To understand the effects of salt stress on the protein level of okra, a comparative proteomic analysis of okra seedlings grown in the presence of 0 or 300 mmol L- 1 NaCl treatment was performed using an integrated approach of Tandem Mass Tag labeling and LC-MS/MS integrated approach. RESULTS: A total of 7179 proteins were identified in this study, for which quantitative information was available for 5774 proteins. In the NaCl/control comparison group, there were 317 differentially expressed proteins (DEPs), of which 165 proteins were upregulated and 152 proteins downregulated in the presence of NaCl. Based on the above data, we carried out a systematic bioinformatics analysis of proteins with information, including protein annotation, domain characteristics, functional classification, and pathway enrichment. Enriched gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the DEPs were most strongly associated with "response to stress" and "protein processing in endoplasmic reticulum". Furthermore, several heat shock proteins were identified as DEPs. CONCLUSIONS: This information provides a reference direction for further research on the okra proteome in the downstream of the salt stress response, with our data revealing that the responses of okra to salt stress involves by various pathways.


Assuntos
Abelmoschus/metabolismo , Biologia Computacional/métodos , Proteínas de Plantas/metabolismo , Proteômica/métodos , Estresse Salino , Plântula/metabolismo , Abelmoschus/crescimento & desenvolvimento , Mapas de Interação de Proteínas , Plântula/crescimento & desenvolvimento
4.
Plant Cell Environ ; 42(4): 1125-1138, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30399648

RESUMO

In rice, there are five members of the auxin carrier AUXIN1/LIKE AUX1 family; however, the biological functions of the other four members besides OsAUX1 remain unknown. Here, by using CRISPR/Cas9, we constructed two independent OsAUX3 knock-down lines, osaux3-1 and osaux3-2, in wild-type rice, Hwayoung (WT/HY) and Dongjin (WT/DJ). osaux3-1 and osaux3-2 have shorter primary roots (PRs), decreased lateral root (LR) density, and longer root hairs (RHs) compared with their WT. OsAUX3 expression in PRs, LRs, and RHs further supports that OsAUX3 plays a critical role in the regulation of root development. OsAUX3 locates at the plasma membrane and functions as an auxin influx carrier affecting acropetal auxin transport. OsAUX3 is up-regulated in the root apex under aluminium (Al) stress, and osaux3-2 is insensitive to Al treatments. Furthermore, 1-naphthylacetic acid accented the sensitivity of WT/DJ and osaux3-2 to respond to Al stress. Auxin concentrations, Al contents, and Al-induced reactive oxygen species-mediated damage in osaux3-2 under Al stress are lower than in WT, indicating that OsAUX3 is involved in Al-induced inhibition of root growth. This study uncovers a novel pathway alleviating Al-induced oxidative damage by inhibition of acropetal auxin transport and provides a new option for engineering Al-tolerant rice species.


Assuntos
Alumínio/toxicidade , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Ácidos Indolacéticos/metabolismo , Oryza/efeitos dos fármacos , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase
5.
Int J Mol Sci ; 20(7)2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965557

RESUMO

The regulator of chromosome condensation 1 (RCC1) is the nucleotide exchange factor for a GTPase called the Ras-related nuclear protein, and it is important for nucleo-plasmic transport, mitosis, nuclear membrane assembly, and control of chromatin agglutination during the S phase of mitosis in animals. In plants, RCC1 molecules act mainly as regulating factors for a series of downstream genes during biological processes such as the ultraviolet-B radiation (UV-B) response and cold tolerance. In this study, 56 genes were identified in upland cotton by searching the associated reference genomes. The genes were found to be unevenly distributed on 26 chromosomes, except A06, A12, D03, and D12. Phylogenetic analysis by maximum-likelihood revealed that the genes were divided into five subgroups. The RCC1 genes within the same group shared similar exon/intron patterns and conserved motifs in their encoded proteins. Most genes of the RCC1 family are expressed differently under various hormone treatments and are negatively controlled by salt stress. Gh_A05G3028 and Gh_D10G2310, which encode two proteins located in the nucleus, were strongly induced under salt treatment, while mutants of their homoeologous gene (UVR8) in Arabidopsis and VIGS (virus induced gene silencing) lines of the two genes above in G. hirsutum exhibited a salt-sensitive phenotype indicating their potential role in salt resistance in cotton. These results provide valuable reference data for further study of RCC1 genes in cotton.


Assuntos
Gossypium/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Plantas/metabolismo , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta/genética , Gossypium/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
6.
Int J Mol Sci ; 20(6)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871161

RESUMO

Soil salinization is a major environmental stresses that seriously threatens land use efficiency and crop yields worldwide. Although the overall response of plants to NaCl has been well studied, the contribution of protein phosphorylation to the detoxification and tolerance of NaCl in okra (Abelmoschus esculentus L.) seedlings is unclear. The molecular bases of okra seedlings' responses to 300 mM NaCl stress are discussed in this study. Using a combination of affinity enrichment, tandem mass tag (TMT) labeling and high-performance liquid chromatography⁻tandem mass spectrometry analysis, a large-scale phosphoproteome analysis was performed in okra. A total of 4341 phosphorylation sites were identified on 2550 proteins, of which 3453 sites of 2268 proteins provided quantitative information. We found that 91 sites were upregulated and 307 sites were downregulated in the NaCl/control comparison group. Subsequently, we performed a systematic bioinformatics analysis including gene ontology annotation, domain annotation, subcellular localization, and Kyoto Encyclopedia of Genes and Genomes pathway annotation. The latter revealed that the differentially expressed proteins were most strongly associated with 'photosynthesis antenna proteins' and 'RNA degradation'. These differentially expressed proteins probably play important roles in salt stress responses in okra. The results should help to increase our understanding of the molecular mechanisms of plant post-translational modifications in response to salt stress.


Assuntos
Abelmoschus/metabolismo , Fosforilação/fisiologia , Proteoma/metabolismo , Estresse Salino/fisiologia , Plântula/metabolismo , Abelmoschus/genética , Biologia Computacional/métodos , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Ontologia Genética , Genes de Plantas/genética , Genes de Plantas/fisiologia , Genoma de Planta/genética , Genoma de Planta/fisiologia , Fosforilação/genética , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Proteoma/genética , Proteômica/métodos , Estresse Salino/genética , Plântula/genética , Regulação para Cima/genética , Regulação para Cima/fisiologia
7.
Int J Mol Sci ; 18(12)2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29244768

RESUMO

Auxin response factors (ARFs) play important roles in regulating plant growth and development and response to environmental stress. An exhaustive analysis of the CaARF family was performed using the latest publicly available genome for pepper (Capsicum annuum L.). In total, 22 non-redundant CaARF gene family members in six classes were analyzed, including chromosome locations, gene structures, conserved motifs of proteins, phylogenetic relationships and Subcellular localization. Phylogenetic analysis of the ARFs from pepper (Capsicum annuum L.), tomato (Solanum lycopersicum L.), Arabidopsis and rice (Oryza sativa L.) revealed both similarity and divergence between the four ARF families, and aided in predicting biological functions of the CaARFs. Furthermore, expression profiling of CaARFs was obtained in various organs and tissues using quantitative real-time RT-PCR (qRT-PCR). Expression analysis of these genes was also conducted with various hormones and abiotic treatments using qRT-PCR. Most CaARF genes were regulated by exogenous hormone treatments at the transcriptional level, and many CaARF genes were altered by abiotic stress. Systematic analysis of CaARF genes is imperative to elucidate the roles of CaARF family members in mediating auxin signaling in the adaptation of pepper to a challenging environment.


Assuntos
Proteínas de Arabidopsis/genética , Capsicum/genética , Proteínas de Ligação a DNA/genética , Filogenia , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Capsicum/crescimento & desenvolvimento , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Família Multigênica/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Alinhamento de Sequência
8.
Plant J ; 83(5): 818-30, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26140668

RESUMO

Auxin and cadmium (Cd) stress play critical roles during root development. There are only a few reports on the mechanisms by which Cd stress influences auxin homeostasis and affects primary root (PR) and lateral root (LR) development, and almost nothing is known about how auxin and Cd interfere with root hair (RH) development. Here, we characterize rice osaux1 mutants that have a longer PR and shorter RHs in hydroponic culture, and that are more sensitive to Cd stress compared to wild-type (Dongjin). OsAUX1 expression in root hair cells is different from that of its paralogous gene, AtAUX1, which is expressed in non-hair cells. However, OsAUX1, like AtAUX1, localizes at the plasma membrane and appears to function as an auxin tranporter. Decreased auxin distribution and contents in the osaux1 mutant result in reduction of OsCyCB1;1 expression and shortened PRs, LRs and RHs under Cd stress, but may be rescued by treatment with the membrane-permeable auxin 1-naphthalene acetic acid. Treatment with the auxin transport inhibitors 1-naphthoxyacetic acid and N-1-naphthylphthalamic acid increased the Cd sensitivity of WT rice. Cd contents in the osaux1 mutant were not altered, but reactive oxygen species-mediated damage was enhanced, further increasing the sensitivity of the osaux1 mutant to Cd stress. Taken together, our results indicate that OsAUX1 plays an important role in root development and in responses to Cd stress.


Assuntos
Cádmio/toxicidade , Proteínas de Transporte/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transporte Biológico , Cádmio/farmacocinética , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Glicolatos/farmacologia , Hidroponia/métodos , Ácidos Indolacéticos/metabolismo , Mutação , Oryza/efeitos dos fármacos , Ftalimidas/farmacologia , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Estresse Fisiológico/efeitos dos fármacos
9.
New Phytol ; 201(1): 91-103, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24111723

RESUMO

Phosphorus (P) is crucial nutrient element for crop growth and development. However, the network pathway regulating homeostasis of phosphate (Pi) in crops has many molecular breeding unknowns. Here, we report that an auxin response factor, OsARF12, functions in Pi homeostasis. Measurement of element content, quantitative reverse transcription polymerase chain reaction analysis and acid phosphatases (APases) activity assay showed that the osarf12 mutant and osarf12/25 double mutant with P-intoxicated phenotypes had higher P concentrations, up-regulation of the Pi transporter encoding genes and increased APase activity under Pi-sufficient/-deficient (+Pi/-Pi, 0.32/0 mM NaH2 PO4) conditions. Transcript analysis revealed that Pi-responsive genes--Phosphate starvation (OsIPS)1 and OsIPS2, SYG1/Pho81/XPR1(OsSPX1), Sulfoquinovosyldiacylglycerol 2 (OsSQD2), R2R3 MYB transcription factor (OsMYB2P-1) and Transport Inhibitor Response1 (OsTIR1)--were more abundant in the osarf12 and osarf12/25 mutants under +Pi/-Pi conditions. Knockout of OsARF12 also influenced the transcript abundances of the OsPHR2 gene and its downstream components, such as OsMiR399j, OsPHO2, OsMiR827, OsSPX-MFS1 and OsSPX-MFS2. Results from -Pi/1-naphthylphthalamic acid (NPA) treatments, and auxin reporter DR5::GUS staining suggest that root system alteration and Pi-induced auxin response were at least partially controlled by OsARF12. These findings enrich our understanding of the biological functions of OsARF12, which also acts in regulating Pi homeostasis.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Oryza/genética , Fosfatos/metabolismo , Fósforo/metabolismo , Fatores de Transcrição/genética , Homeostase , MicroRNAs , Mutação , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismo , Ativação Transcricional
10.
Front Plant Sci ; 14: 1124905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909424

RESUMO

Wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is the world's most widely cultivated crop and an important staple food for humans, accounting for one-fifth of calories consumed. Proteins encoded by the regulator of chromosome condensation 1 (RCC1) are highly conserved among eukaryotes and consist of seven repeated domains that fold into a seven-bladed propeller structure. In this study, a total of 76 RCC1 genes of bread wheat were identified via a genome-wide search, and their phylogenetic relationship, gene structure, protein-conserved domain, chromosome localization, conserved motif, and transcription factor binding sites were systematically analyzed using the bioinformatics approach to indicate the evolutionary and functional features of these genes. The expression patterns of 76 TaRCC1 family genes in wheat under various stresses were further analyzed, and RT-PCR verified that RCC1-3A (TraesCS3A02G362800), RCC1-3B (TraesCS3B02G395200), and RCC1-3D (TraesCS3D02G35650) were significantly induced by salt, cold, and drought stresses. Additionally, the co-expression network analysis and binding site prediction suggested that Myb-7B (TraesCS7B02G188000) and Myb-7D (TraesCS7D02G295400) may bind to the promoter of RCC1-3A/3B and upregulate their expression in response to abiotic stresses in wheat. The results have furthered our understanding of the wheat RCC1 family members and will provide important information for subsequent studies and the use of RCC1 genes in wheat.

11.
Sci Total Environ ; 897: 165432, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437629

RESUMO

Nanoplastics (NPs) have emerged as a novel environmental threat due to their potential impacts on both animals and plants. Currently, research on the ecotoxicity of NPs has mainly focused on marine aquatic organisms and freshwater algae, with very limited investigations conducted on horticultural plants. This study examined the effects of varying concentrations (0, 1, 10, 50 mg·L-1) of polystyrene NPs (PS-NPs) on strawberry growth. The findings revealed that low concentrations of PS-NPs stimulated strawberry growth, whereas high concentrations impeded it. Notably, diverse strawberry cultivars displayed considerable differences in their sensitivity to PS-NP exposure. Laser scanning confocal microscopy confirmed the absorption of PS-NPs by strawberry roots, with variations in PS-NP accumulation observed across different cultivars. Comparative transcriptomics analysis suggested that the differential expression of genes responsible for calcium ion transport played a significant role in the observed intervarietal differences in PS-NP accumulation among strawberry cultivars. Furthermore, distinct variations in endogenous oxidative responses were observed in different strawberry cultivars under PS-NP treatment. Further analysis indicated that the down-regulation of peroxidase (POD) gene expression and terpenoid compounds accumulation were responsible for heightened endogenous oxidative stress observed in certain strawberry cultivars under PS-NP treatment. Transcriptomic and metabolomic analyses were performed on six strawberry cultivars to investigate their response to PS-NPs in terms of endogenous gene expression and metabolite accumulation. The results identified one commonly up-regulated gene (wall-associated receptor kinase-like) and sixteen commonly down-regulated genes associated with lipid metabolism and carbohydrate metabolism. In addition, a significant reduction in fatty acid metabolite accumulation was observed in the six strawberry cultivars under PS-NP treatment. These findings have significant implications for understanding the effects of NPs on strawberry growth, metabolism, and antioxidant responses, as well as identifying marker genes for monitoring and evaluating the impact of NP pollution on strawberry.


Assuntos
Fragaria , Animais , Microplásticos/metabolismo , Estresse Oxidativo , Fenótipo , Transcriptoma , Poliestirenos/toxicidade
12.
Front Plant Sci ; 13: 1078083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684735

RESUMO

Saline stress is a significant factor that caused crop growth inhibition and yield decline. SHORT INTERNODES/STYLISH (SHI/STY) and SHI-RELATED SEQUENCE (SRS) transcription factors are specific to plants and share a conserved RING-like zinc-finger domain (CX2CX7CX4CX2C2X6C). However, the functions of SHI/STY and SRS genes in cotton responses to salt stress remain unclear. In this study, 26 GhSRSs were identified in Gossypium hirsutum, which further divided into three subgroups. Phylogenetic analysis of 88 SRSs from8 plant species revealed independent evolutionary pattern in some of SRSs derived from monocots. Conserved domain and subcellular location predication of GhSRSs suggested all of them only contained the conserved RING-like zinc-finger domain (DUF702) domain and belonged to nucleus-localized transcription factors except for the GhSRS22. Furthermore, synteny analysis showed structural variation on chromosomes during the process of cotton polyploidization. Subsequently, expression patterns of GhSRS family members in response to salt and drought stress were analyzed in G. hirsutum and identified a salt stress-inducible gene GhSRS21. The GhSRS21 was proved to localize in the nuclear and silencing it in G. hirsutum increased the cotton resistance to salt using the virus-induced gene silencing (VIGS) system. Finally, our transcriptomic data revealed that GhSRS21 negatively controlled cotton salt tolerance by regulating the balance between ROS production and scavenging. These results will increase our understanding of the SRS gene family in cotton and provide the candidate resistant gene for cotton breeding.

13.
Front Plant Sci ; 12: 731834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630480

RESUMO

Root systems are instrumental for water and nutrient uptake and the anchorage of plants in the soil. Root regulating GL2-interacting repressors (GIRs) contain a Short RING-like Zinc-Finger (SRNF) domain, but there has been no comprehensive characterization about this gene family in any plant species. Here, we renamed the GIR-like proteins as SRNF proteins due to their conserved domain and identified 140 SRNF genes from 16 plant species including 24 GhSRNF genes in Gossypium hirsutum. Phylogenetic analysis of the SRNFs revealed both similarities and divergences between five subfamilies. Notably, synteny analysis revealed that polyploidization and whole-genome duplication contribute to the expansion of the GhSRNF gene family. Various cis-acting regulatory elements were shown to be pertinent to light, phytohormone, defense responsive, and meristem regulation. Furthermore, GhSRNF2/15 were predominantly expressed in root, whereas the expression of GhSRNF18 is positively correlated with the primary root (PR) length in G. hirsutum, quantified by quantitative real-time PCR (qRT-PCR). Over-expression of GhSRNF18 in Arabidopsis and virus-induced gene silencing (VIGS) of GhSRNF18 in G. hirsutum has revealed the role of GhSRNF18 in PR growth. The over-expression of GhSRNF18 in Arabidopsis resulted in an increase of meristematic activities and auxin accumulations in PRs, which were consistent with the transcriptomic data. Our results suggested that GhSRNF18 positively regulates PR growth. This study increased our understanding of the SRNF gene family in plants and provided a novel rationale for the further investigation of cotton root morphogenesis regulated by the GhSRNFs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA