Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 55(3): 527-541.e5, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35231421

RESUMO

The presence of intratumoral tertiary lymphoid structures (TLS) is associated with positive clinical outcomes and responses to immunotherapy in cancer. Here, we used spatial transcriptomics to examine the nature of B cell responses within TLS in renal cell carcinoma (RCC). B cells were enriched in TLS, and therein, we could identify all B cell maturation stages toward plasma cell (PC) formation. B cell repertoire analysis revealed clonal diversification, selection, expansion in TLS, and the presence of fully mature clonotypes at distance. In TLS+ tumors, IgG- and IgA-producing PCs disseminated into the tumor beds along fibroblastic tracks. TLS+ tumors exhibited high frequencies of IgG-producing PCs and IgG-stained and apoptotic malignant cells, suggestive of anti-tumor effector activity. Therapeutic responses and progression-free survival correlated with IgG-stained tumor cells in RCC patients treated with immune checkpoint inhibitors. Thus, intratumoral TLS sustains B cell maturation and antibody production that is associated with response to immunotherapy, potentially via direct anti-tumor effects.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Estruturas Linfoides Terciárias , Carcinoma de Células Renais/terapia , Feminino , Humanos , Imunoglobulina G , Neoplasias Renais/terapia , Masculino , Plasmócitos , Estruturas Linfoides Terciárias/patologia , Microambiente Tumoral
2.
Circ Res ; 132(4): e78-e93, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36688311

RESUMO

BACKGROUND: Macrophage activation plays a critical role in abdominal aortic aneurysm (AAA) development. However, molecular mechanisms controlling macrophage activation and vascular inflammation in AAA remain largely unknown. The objective of the study was to identify novel mechanisms underlying adenosine deaminase acting on RNA (ADAR1) function in macrophage activation and AAA formation. METHODS: Aortic transplantation was conducted to determine the importance of nonvascular ADAR1 in AAA development/dissection. Ang II (Angiotensin II) infusion of ApoE-/- mouse model combined with macrophage-specific knockout of ADAR1 was used to study ADAR1 macrophage-specific role in AAA formation/dissection. The relevance of macrophage ADAR1 to human AAA was examined using human aneurysm specimens. Moreover, a novel humanized AAA model was established to test the role of human macrophages in aneurysm formation in human arteries. RESULTS: Allograft transplantation of wild-type abdominal aortas to ADAR1+/- recipient mice significantly attenuated AAA formation, suggesting that nonvascular ADAR1 is essential for AAA development. ADAR1 deficiency in hematopoietic cells decreased the prevalence and severity of AAA while inhibited macrophage infiltration and aorta wall inflammation. ADAR1 deletion blocked the classic macrophage activation, diminished NF-κB (nuclear factor kappa B) signaling, and enhanced the expression of a number of anti-inflammatory microRNAs. Mechanistically, ADAR1 interacted with Drosha to promote its degradation, which attenuated Drosha-DGCR8 (DiGeorge syndrome critical region 8) interaction, and consequently inhibited pri- to pre-microRNA processing of microRNAs targeting IKKß, resulting in an increased IKKß (inhibitor of nuclear factor kappa-B) expression and enhanced NF-κB signaling. Significantly, ADAR1 was induced in macrophages and interacted with Drosha in human AAA lesions. Reconstitution of ADAR1-deficient, but not the wild type, human monocytes to immunodeficient mice blocked the aneurysm formation in transplanted human arteries. CONCLUSIONS: Macrophage ADAR1 promotes aneurysm formation in both mouse and human arteries through a novel mechanism, that is, Drosha protein degradation, which inhibits the processing of microRNAs targeting NF-kB signaling and thus elicits macrophage-mediated vascular inflammation in AAA.


Assuntos
Aneurisma da Aorta Abdominal , MicroRNAs , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Quinase I-kappa B/metabolismo , Ativação de Macrófagos , Camundongos Knockout , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Aorta Abdominal/metabolismo , Inflamação/metabolismo , Angiotensina II/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo
3.
J Cell Mol Med ; 28(10): e18363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770891

RESUMO

The spleen is a vital organ for the immune system, while splenectomy may be necessary for various reasons. However, there is limited research on the impact of splenectomy on T cell function in peripheral lymph nodes as a compensatory mechanism in preventing infections. This study aimed to investigate the characteristics and function of CD8+ and CD4+ T cells in different peripheral lymph nodes during viral infection using a well-established splenectomy model. The results revealed that splenectomy caused an increase in CD8+GP33+ T cells in the mesenteric lymph nodes (MLN). Moreover, we demonstrated that splenectomy resulted in an increase of effector KLRG1+ T cells in the MLN. Additionally, the number of CD4+ cytotoxic T cells (CD4 CTLs) was also elevated in the peripheral lymph nodes of mice with splenectomy. Surprisingly, aged mice exhibited a stronger compensatory ability than adult mice, as evidenced by an increase in effector CD8+ T cells in all peripheral lymph nodes. These findings provide compelling evidence that T cells in MLN play a crucial role in protecting individuals with splenectomy against viral infections. The study offers new insights into understanding the changes in the immune system of individuals with splenectomy and highlights the potential compensatory mechanisms involved by T cells in peripheral lymph nodes.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Linfonodos , Esplenectomia , Animais , Linfonodos/imunologia , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia , Camundongos Endogâmicos C57BL , Baço/imunologia
4.
J Immunol ; 209(5): 886-895, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914836

RESUMO

Memory CD8+ T cells play an essential role in providing effective and lifelong protection against pathogens. Comprehensive transcriptional and epigenetic networks are involved in modulating memory T cell development, but the molecular regulations of CD8+ memory T cell formation and long-term persistence remain largely unknown. In this study, we show that zinc finger protein 335 (Zfp335) is indispensable for CD8+ T cell memory establishment and maintenance during acute infections. Mice with Zfp335 deletion in CD8+ T cells exhibit a significant reduction of memory T cells and memory precursor cells in the contraction phase. Zfp335 deficiency in CD8+ T cells resulted in decreased expression of memory featured genes Eomes and IL-2Rß, leading to a loss of memory identity and an increase of apoptosis in response to IL-7 and IL-15. Mechanistically, Zfp335 directly binds to and regulates TCF-1, known to be critical for memory T cell development. Importantly, overexpression TCF-1 could rescue the defects in the survival of both CD8+ memory precursors and memory T cells caused by Zfp335 deficiency. Collectively, our findings reveal that Zfp335 serves as a novel transcriptional factor upstream of TCF-1 in regulating CD8+ T cell memory.


Assuntos
Linfócitos T CD8-Positivos , Interleucina-15 , Animais , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica , Memória Imunológica/genética , Interleucina-15/metabolismo , Interleucina-7/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição
5.
J Immunol ; 209(5): 855-863, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36130132

RESUMO

Effector CD8+ T cells are crucial players in adaptive immunity for effective protection against invading pathogens. The regulatory mechanisms underlying CD8+ T cell effector differentiation are incompletely understood. In this study, we defined a critical role of mediator complex subunit 1 (Med1) in controlling effector CD8+ T cell differentiation and survival during acute bacterial infection. Mice with Med1-deficient CD8+ T cells exhibited significantly impaired expansion with evidently reduced killer cell lectin-like receptor G1+ terminally differentiated and Ly6c+ effector cell populations. Moreover, Med1 deficiency led to enhanced cell apoptosis and expression of multiple inhibitory receptors (programmed cell death 1, T cell Ig and mucin domain-containing-3, and T cell immunoreceptor with Ig and ITIM domains). RNA-sequencing analysis revealed that T-bet- and Zeb2-mediated transcriptional programs were impaired in Med1-deficient CD8+ T cells. Overexpression of T-bet could rescue the differentiation and survival of Med1-deficient CD8+ effector T cells. Mechanistically, the transcription factor C/EBPß promoted T-bet expression through interacting with Med1 in effector T cells. Collectively, our findings revealed a novel role of Med1 in regulating effector CD8+ T cell differentiation and survival in response to bacterial infection.


Assuntos
Linfócitos T CD8-Positivos , Subunidade 1 do Complexo Mediador , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular , Subunidade 1 do Complexo Mediador/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mucinas/metabolismo , RNA/metabolismo , Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteínas com Domínio T/metabolismo
7.
J Cell Mol Med ; 26(15): 4268-4276, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35770325

RESUMO

Under static condition, the pool size of peripheral invariant natural killer T (iNKT) cells is determined by their homeostatic proliferation, survival and thymic input. However, the underlying mechanism is not fully understood. In the present study, we found that the percentage and number of iNKT cells were significantly reduced in the spleen, but not in the thymus of mice with deletion of polybromo-1 (Pbrm1) compared to wild type (WT) mice. Pbrm1 deletion did not affect iNKT cell proliferation and survival, instead significantly impaired their development from stage 1 to stage 2. Importantly, loss of Pbrm1 led to a dysfunction of RORγt expression and iNKT17 cell differentiation, but not iNKT1 and iNKT2 proportion. Collectively, our study reveals a novel mechanism of Pbrm1 controlling the peripheral size of iNKT cells through regulating their development and differentiation.


Assuntos
Células T Matadoras Naturais , Animais , Diferenciação Celular/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço , Timo
8.
Immunology ; 165(4): 402-413, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34921692

RESUMO

Early T-cell development from CD4-  CD8- double-negative (DN) stage to CD4+  CD8+ double-positive (DP) stage in the thymus is regulated through multiple steps involving a batch of sequentially expressed factors. Our preliminary data and a recent report showed that AT-rich interaction domain 1A (Arid1a) is required for the transition from DN to DP stages, but the mechanism is not fully understood. In this study, we consolidated that conditional deletion of Arid1a in T-cell lineage intrinsically caused developmental blocks from DN3 to DN4 stages, as well as from DN4 to DP stages using both in vivo adoptive T-cell transfer model and in vitro culture system. The expression of intracellular TCRß is significantly decreased in Arid1a-deficient DN4 cells compared with WT cells. OT1 transgenic TCR can rescue the defect in the transition from DN3 to DN4 stages, but not from DN to DP stages. Furthermore, we observed a comparable or stronger proliferation capacity accompanied by a significant increase in cell death in Arid1a-/- DP cells compared with that in WT controls. RNA-Seq analysis shows a significant enrichment of apoptotic pathway within differentially expressed genes between Arid1a-/- and WT DP cells, including the upregulation of Bim, Casp3 and Trp53 and the downregulation of Rorc, Bcl-XL and Mcl1. Therefore, our study reveals a novel mechanism that Arid1a controls early T-cell development by maintaining intracellular TCRß expression-mediated ß-selection and activating parallel cell survival pathways.


Assuntos
Ativação Linfocitária , Timócitos , Animais , Diferenciação Celular , Linhagem da Célula , Sobrevivência Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Timo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
J Cell Mol Med ; 25(10): 4870-4876, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33733611

RESUMO

Under steady-state conditions, the pool size of peripheral CD8+ T cells is maintained through turnover and survival. Beyond TCR and IL-7R signals, the underlying mechanisms are less well understood. In the present study, we found a significant reduction of CD8+ T cell proportion in spleens but not in thymi of mice with T cell-specific deletion of Mediator Subunit 1 (Med1). A competitive transfer of wild-type (WT) and Med1-deficient CD8+ T cells reproduced the phenotype in the same recipients and confirmed intrinsic role of Med1. Furthermore, we observed a comparable degree of migration and proliferation but a significant increase of cell death in Med1-deficient CD8+ T cells compared with WT counterparts. Finally, Med1-deficient CD8+ T cells exhibited a decreased expression of interleukin-7 receptor α (IL-7Rα), down-regulation of phosphorylated-STAT5 (pSTAT5) and Bim up-regulation. Collectively, our study reveals a novel role of Med1 in the maintenance of CD8+ T cells through IL-7Rα/STAT5 pathway-mediated cell survival.


Assuntos
Linfócitos T CD8-Positivos , Subunidade 1 do Complexo Mediador/imunologia , Receptores de Interleucina-7/imunologia , Baço/imunologia , Animais , Apoptose , Células da Medula Óssea , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Subunidade 1 do Complexo Mediador/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais , Baço/citologia
10.
Genesis ; 58(1): e23337, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31571391

RESUMO

Proper development of taste organs including the tongue and taste papillae requires interactions with the underlying mesenchyme through multiple molecular signaling pathways. The effects of bone morphogenetic proteins (BMPs) and antagonists are profound, however, the tissue-specific roles of distinct receptors are largely unknown. Here, we report that constitutive activation (ca) of ALK2-BMP signaling in the tongue mesenchyme (marked by Wnt1-Cre) caused microglossia-a dramatically smaller and misshapen tongue with a progressively severe reduction in size along the anteroposterior axis and absence of a pharyngeal region. At E10.5, the tongue primordia (branchial arches 1-4) formed in Wnt1-Cre/caAlk2 mutants while each branchial arch responded to elevated BMP signaling distinctly in gene expression of BMP targets (Id1, Snai1, Snai2, and Runx2), proliferation (Cyclin-D1) and apoptosis (p53). Moreover, elevated ALK2-BMP signaling in the mesenchyme resulted in apparent defects of lingual epithelium, muscles, and nerves. In Wnt1-Cre/caAlk2 mutants, a circumvallate papilla was missing and further development of formed fungiform papillae was arrested in late embryos. Our data collectively demonstrate that ALK2-BMP signaling in the mesenchyme plays essential roles in orchestrating various tissues for proper development of the tongue and its appendages in a region-specific manner.


Assuntos
Receptores de Ativinas Tipo I/genética , Proteínas Morfogenéticas Ósseas/genética , Língua/embriologia , Receptores de Ativinas Tipo I/metabolismo , Animais , Apoptose/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células/genética , Epitélio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Crista Neural/metabolismo , Transdução de Sinais/genética , Papilas Gustativas/embriologia , Doenças da Língua/genética , Doenças da Língua/metabolismo , Transativadores/genética , Proteína Wnt1/genética
11.
Am J Physiol Cell Physiol ; 319(1): C105-C115, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32374674

RESUMO

Transforming growth factor-ß (TGF-ß)-induced fibroblast activation is a key pathological event during tissue fibrosis. Long noncoding RNA (lncRNA) is a class of versatile gene regulators participating in various cellular and molecular processes. However, the function of lncRNA in fibroblast activation is still poorly understood. In this study, we identified growth arrest-specific transcript 5 (GAS5) as a novel regulator for TGF-ß-induced fibroblast activation. GAS5 expression was downregulated in cultured fibroblasts by TGF-ß and in resident fibroblasts from bleomycin-treated skin tissues. Overexpression of GAS5 suppressed TGF-ß-induced fibroblast to myofibroblast differentiation. Mechanistically, GAS5 directly bound mothers against decapentaplegic homolog 3 (Smad3) and promoted Smad3 binding to Protein phosphatase 1A (PPM1A), a Smad3 dephosphatase, and thus accelerated Smad3 dephosphorylation in TGF-ß-treated fibroblasts. In addition, GAS5 inhibited fibroblast proliferation. Importantly, local delivery of GAS5 via adenoviral vector suppressed bleomycin-induced skin fibrosis in mice. Collectively, our data revealed that GAS5 suppresses fibroblast activation and fibrogenesis through inhibiting TGF-ß/Smad3 signaling, which provides a rationale for an lncRNA-based therapy to treat fibrotic diseases.


Assuntos
Fibroblastos/metabolismo , RNA Longo não Codificante/biossíntese , Transdução de Sinais/fisiologia , Proteína Smad3/antagonistas & inibidores , Proteína Smad3/metabolismo , Animais , Fibroblastos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , RNA Longo não Codificante/genética , Dermatopatias/genética , Dermatopatias/patologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo
12.
J Immunol ; 200(8): 2777-2785, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29507108

RESUMO

Systemic sclerosis (SSc) is a multisystem autoimmune disorder that is characterized by inflammation and fibrosis in the skin and internal organs. Previous studies indicate that inflammatory cells and cytokines play essential roles in the pathogenesis of SSc; however, the mechanisms that underlie the inflammation-driven development of SSc are not fully understood. In this study, we show that response gene to complement 32 (RGC32) is abundantly expressed in mouse macrophages in the early stage of bleomycin-induced SSc. Importantly, RGC32 is required to induce the inflammatory response during the onset of SSc, because RGC32 deficiency in mice significantly ameliorates skin and lung sclerosis and inhibits the expression of inflammatory mediators inducible NO synthase (iNOS) and IL-1ß in macrophages. RGC32 appears to be a novel regulator for the differentiation of classically activated macrophages (M1 macrophages). IFN-γ and LPS stimulation induces RGC32 expression in primary peritoneal macrophages and bone marrow-derived macrophages. RGC32 deficiency impairs the polarization of M1 macrophages and attenuates iNOS and IL-1ß production. Mechanistically, RGC32 interacts with NF-κB proteins and promotes iNOS and IL-1ß expression by binding to their promoters. Collectively, our data reveal that RGC32 promotes the onset of SSc by regulating the inflammatory response of M1 macrophages, and it may serve as a promising therapeutic target for treating SSc.


Assuntos
Macrófagos/imunologia , Proteínas Nucleares/imunologia , Escleroderma Sistêmico/imunologia , Animais , Bleomicina/toxicidade , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Feminino , Ativação de Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Escleroderma Sistêmico/induzido quimicamente , Escleroderma Sistêmico/patologia
13.
BMC Endocr Disord ; 19(1): 28, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30832625

RESUMO

BACKGROUND: Although snoring has been previously reported to be associated with metabolic syndrome (MetS), its interaction with body mass index(BMI) on MetS remains unclear. We aimed to examine the individual effects and possible interaction between snoring and BMI on MetS. METHODS: From July 2013 to December 2013, 3794 employees of coal mining enterprises aged 18 to 65 were recruited from Shanxi province of China. The individual effects were assessed by multivariable logistic regression model. Additive interaction was evaluated by calculating the relative excess risk due to interaction (RERI), attributable proportion due to interaction (AP) and synergy index(S). RESULTS: We found that, after adjusting for potential confounders, odds ratio (OR) and 95% CI for MetS was 1.30 (1.09, 1.56) in occasional snorers and 1.50 (1.24, 1.82) in habitual snorers compared with non-snorers. BMI ≥ 24 was related to high risk of MetS (OR, 3.27; 95% CI, 2.93-3.63). Significant additive interaction between snoring and BMI on MetS was detected. The estimates and 95% CI of the RERI, AP and S were 1.89 (0.67, 3.24), 0.23 (0.08, 0.38), and 1.37 (1.11, 1.75), respectively. However, stratified by workplace, the additive interaction was only significant among underground front-line and ground workers. CONCLUSIONS: Both Snoring and BMI were related to high risk of Mets. Moreover, there are additive interaction between snoring and BMI. Snorers who worked underground front-line and ground are more susceptible to the negative impact of being overweight on MetS.


Assuntos
Índice de Massa Corporal , Síndrome Metabólica/epidemiologia , Mineradores/estatística & dados numéricos , Ronco/fisiopatologia , Adolescente , Adulto , Idoso , China/epidemiologia , Estudos Transversais , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Prognóstico , Adulto Jovem
14.
Genesis ; 55(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28371069

RESUMO

P0-Cre and Wnt1-Cre mouse lines have been widely used in combination with loxP-flanked mice to label and genetically modify neural crest (NC) cells and their derivatives. Wnt1-Cre has been regarded as the gold standard and there have been concerns about the specificity of P0-Cre because it is not clear about the timing and spatial distribution of the P0-Cre transgene in labeling NC cells at early embryonic stages. We re-visited P0-Cre and Wnt1-Cre models in the labeling of NC cells in early mouse embryos with a focus on cranial NC. We found that R26-lacZ Cre reporter responded to Cre activity more reliably than CAAG-lacZ Cre reporter during early embryogenesis. Cre immunosignals in P0-Cre and reporter (lacZ and RFP) activity in P0-Cre/R26-lacZ and P0-Cre/R26-RFP embryos was detected in the cranial NC and notochord regions in E8.0-9.5 (4-19 somites) embryos. P0-Cre transgene expression was observed in migrating NC cells and was more extensive in the forebrain and hindbrain but not apparent in the midbrain. Differences in the Cre distribution patterns of P0-Cre and Wnt1-Cre were profound in the midbrain and hindbrain regions, that is, extensive in the midbrain of Wnt1-Cre and in the hindbrain of P0-Cre embryos. The difference between P0-Cre and Wnt1-Cre in labeling cranial NC may provide a better explanation of the differential distributions of their NC derivatives and of the phenotypes caused by Cre-driven genetic modifications.


Assuntos
Crista Neural/citologia , Células-Tronco Neurais/citologia , Neurogênese , Animais , Linhagem da Célula , Integrases/genética , Integrases/metabolismo , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Crista Neural/embriologia , Crista Neural/metabolismo , Células-Tronco Neurais/metabolismo , Prosencéfalo/citologia , Transgenes , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
15.
Lipids Health Dis ; 16(1): 161, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835245

RESUMO

BACKGROUND: Although coal miners are susceptible to dyslipidaemia owing to their highly risky and stressful working environment as well as unhealthy lifestyle, very few studies have focused on this issue thus far. Therefore, this study investigated the current epidemiological characteristics of dyslipidaemia among Chinese coal miners. METHODS: Demographic, anthropometric, and biochemical data were gathered from 4341 coal miners in China. Dyslipidaemia was diagnosed based on the serum lipid levels. Univariate and multivariate logistic regression analyses were used to assess the related risk factors for dyslipidaemia. RESULTS: The average concentrations of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were 5.01 ± 0.93 mmol/L, 1.90 ± 1.72 mmol/L, 1.21 ± 0.35 mmol/L, and 3.15 ± 0.80 mmol/L, respectively. Additionally, 38.08% of participants had a high TC level, 25.84% had a low HDL-C level, 35.08% had a high LDL-C level, and 40.46% had a high TG level. The overall prevalence of dyslipidaemia was 68.28% (95% CI: 66.90-69.66%). Factors associated with dyslipidaemia were age, sex, marital status, monthly family income, type of work, length of service, smoking status, smoking index, drinking status, alcohol consumption per day, elevated fasting glucose, hypertension, obesity and abdominal obesity. CONCLUSIONS: Our study's results indicated a very high prevalence of dyslipidaemia among Chinese coal miners and identified various risk factors for dyslipidaemia.


Assuntos
Minas de Carvão/estatística & dados numéricos , Dislipidemias/epidemiologia , Adulto , Idoso , Povo Asiático , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Profissionais/epidemiologia , Prevalência , Fatores de Risco , Adulto Jovem
16.
Int J Sport Nutr Exerc Metab ; 27(1): 50-58, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27206023

RESUMO

OBJECTIVE: This study aimed to investigate the relationship between metabolic syndrome (MetS) and physical activity (PA) in different domains among male coal miners of Shanxi Province in China. METHOD: The study was conducted from July 2013 to December 2013. A two-stage stratified cluster sampling method was used. Data regarding the general information of participants were collected by well-trained interviewers. MetS was defined according to IDF criteria. Self-reported PA was obtained with the IPAQ and categorized into three tertiles of intensity levels across occupation, transportation, household, and leisure-time domains. Univariate and multiple logistic regression analysis were applied to compute the odds ratios and their 95% confidence interval (CI). RESULTS: A total of 3076 males aged 18-65 years old were recruited in this cross-sectional study. The prevalence of MetS was 40.5% in the study subjects. The percentages of vigorous-intensity PA in MetS and non-MetS groups were 70.07% and 62.92%, respectively. Participants spent most of their time on occupation (2034 MET-min/w) and transportation (693MET-min/w) domains. Higher-intensity levels in occupation domains were significantly associated with lower risk of MetS (OR: 0.759, 95% CI: 0.633-0.911; OR: 0.627, 95% CI: 0.516-0.762). CONCLUSIONS: Across four types of workers, the relationships between PA domains and MetS were different. For underground and underground auxiliary workers, the negative relationship was found between occupation PA and MetS. For office workers, the negative relationship was found between household PA and MetS. For ground workers, only leisure-time PA had positively related to MetS.


Assuntos
Exercício Físico , Síndrome Metabólica/epidemiologia , Mineradores , Adolescente , Adulto , Idoso , China , Análise por Conglomerados , Minas de Carvão , Estudos Transversais , Humanos , Masculino , Síndrome Metabólica/diagnóstico , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Tamanho da Amostra , Fatores Socioeconômicos , Inquéritos e Questionários , Adulto Jovem
17.
J Immunol ; 191(6): 3210-20, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23966632

RESUMO

Thymic epithelial cells (TECs) are a key cell type in the thymic microenvironment essential for T cell development. However, intrinsic molecular mechanisms controlling TEC differentiation and activities are poorly defined. In this study, we found that deficiency of p53-induced phosphatase 1 (Wip1) in mice selectively caused severe medullary TEC (mTEC) maturation defects in an intrinsic manner. Wip1 knockout (KO) mice had decreased mature epithelial cell adhesion molecule⁺Ulex europaeus agglutinin-1 (UEA-1)⁺mTECs, including UEA-1⁺MHC class II(high), UEA-1⁺CD80⁺, UEA-1⁺CD40⁺, and UEA-1⁺Aire⁺ cells, but not decreased numbers of cortical epithelial cell adhesion molecule⁺BP-1⁺ TECs, in the postnatal stage but not in the fetal stage. Wip1-deficient mTECs express fewer tissue-restricted Ags and UEA-1⁺involucrin⁺ terminal-differentiated cells. Animal models, including grafting fetal Wip1-deficient thymic tissue into T cell-deficient nude mice and reconstitution of lethally irradiated Wip1KO mouse recipients with wild-type bone marrow cells, also showed the impaired mTEC components in Wip1KO thymi, indicating the intrinsic regulatory role of Wip1 in mTEC maturation. Furthermore, thymus regeneration was significantly less efficient in adult Wip1KO mice than in wild-type mice after cyclophosphamide treatment. Wip1 deficiency resulted in elevated p38 MAPK activity in mTECs. Activated p38 MAPK has the ability to suppress CD40 expression on mTECs. Wip1-deficient thymi displayed poor response to CD40L in the fetal thymus organ culture system. Thus, Wip1 positively controls mTEC maturation, homeostasis, and regeneration through limiting the p38 MAPK pathway.


Assuntos
Diferenciação Celular/imunologia , Células Epiteliais/metabolismo , Homeostase/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Timo/metabolismo , Animais , Separação Celular , Células Epiteliais/citologia , Feminino , Citometria de Fluxo , Imunofluorescência , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fosfoproteínas Fosfatases/imunologia , Proteína Fosfatase 2C , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Células Estromais/citologia , Células Estromais/imunologia , Células Estromais/metabolismo , Timo/citologia , Timo/imunologia
18.
J Immunol ; 189(10): 4989-5000, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23045614

RESUMO

Immunosuppressive CD11b(+)Gr1(+) myeloid-derived suppressor cells and TGF-ß have been shown to negatively regulate host immunity against allografts. Our results demonstrated that Smad3-deficient mice or mice reconstituted with Smad3-deficient hematopoietic cells rejected allogeneic skin or heart grafts in a significantly slower manner compared with littermates or wild-type (WT) control mice. Transplanted Smad3(-/-) recipients produced markedly less anti-donor IgG Abs, especially IgG1 and IgG2b subclasses. T cells in alloskin-grafted Smad3-deficient mice were more likely to participate in a Th2-type immune response, as evidenced by more Th2-specific transcription factor, GATA3 expression, and increased IL-4 and IL-10 production, as well as less Th1-specific transcription factor, T-bet expression, and decreased IL-2 and IFN-γ production. More CD11b(+)Gr1(+) neutrophil infiltration and less monocyte/macrophage and T cell infiltration in allografts were observed in Smad3(-/-) recipients compared with WT recipients. Increased CXCL1 and CXCL2 as well as decreased CCL3, MCP-1, and RANTES chemokines in allografts of Smad3(-/-) recipients were consistently detected by real-time PCR. Further studies indicated that the increased CD11b(+)Gr1(+) myeloid cells in Smad3-deficient mice were immunosuppressive and responsible for the delayed allograft rejection mainly via an NO-dependent pathway. Thus, this study identifies Smad3 as an intrinsic negative regulator that critically inhibits the differentiation and function of immunosuppressive CD11b(+)Gr1(+) myeloid-derived suppressor cells.


Assuntos
Antígeno CD11b , Rejeição de Enxerto/imunologia , Transplante de Coração/imunologia , Células Mieloides/imunologia , Óxido Nítrico/imunologia , Transplante de Pele/imunologia , Proteína Smad3 , Animais , Quimiocinas/genética , Quimiocinas/imunologia , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/imunologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Rejeição de Enxerto/genética , Rejeição de Enxerto/patologia , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Isoanticorpos/genética , Isoanticorpos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Óxido Nítrico/genética , Células Th2/imunologia , Transplante Homólogo
19.
Front Neurosci ; 18: 1387865, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988767

RESUMO

As a part of the overall information-processing system of the brain, postural control is related to the cognitive processes of working memory. Previous studies have suggested that cognitive tasks and postural control processes can compete for resources in common brain areas, although there is an "inverted U" relationship between arousal level and behavioral control - the arousal level of individuals changes when performing cognitive tasks. However, the exact neural connections between the two are unclear. This may be related to the nature of cognitive tasks. Some studies believe that posture occupies not only spatial information processing resources but also visual non-spatial information processing resources. Other studies believe that posture control only occupies spatial information processing resources in the central system, but does not occupy non-spatial information processing resources. Previous studies used different cognitive task materials and reached different conclusions. In this study, we used the same visuospatial and non-spatial materials, the n-back visual working memory paradigm, the event-related potential technique to investigate the effects of visuospatial and non-spatial working memory tasks on adolescents' postural control under different cognitive loads. The results of this study showed that in both visuospatial and non-spatial conditions, the N1 effect of the parieto-occipital lobe was larger during upright posture than in the sitting position (160-180 ms), the P300 effect of the central parieto-occipital region (280-460 ms) was induced by working memory in different postures, and the P300 wave amplitude was higher in the sitting position than in the upright position. We demonstrated that upright postural control enhances early selective attention but interferes with central memory encoding, thus confirming that postural control and visuospatial and non-spatial working memory share brain regions and compete with each other.

20.
J Adv Res ; 55: 73-87, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36871615

RESUMO

INTRODUCTION: Both innate and adaptive immune system undergo evolution from low to high vertebrates. Due to the limitation of conventional approaches in identifying broader spectrum of immune cells and molecules from various vertebrates, it remains unclear how immune molecules evolve among vertebrates. OBJECTIVES: Here, we utilized carry out comparative transcriptome analysis in various immune cells across seven vertebrate species. METHODS: Single-cell RNA sequencing (scRNA-seq). RESULTS: We uncovered both conserved and species-specific profiling of gene expression in innate and adaptive immunity. Macrophages exhibited highly-diversified genes and developed sophisticated molecular signaling networks along with evolution, indicating effective and versatile functions in higher species. In contrast, B cells conservatively evolved with less differentially-expressed genes in analyzed species. Interestingly, T cells represented a dominant immune cell populations in all species and unique T cell populations were identified in zebrafish and pig. We also revealed compensatory TCR cascade components utilized by different species. Inter-species comparison of core gene programs demonstrated mouse species has the highest similarity in immune transcriptomes to human. CONCLUSIONS: Therefore, our comparative study reveals gene transcription characteristics across multiple vertebrate species during the evolution of immune system, providing insights for species-specific immunity as well as the translation of animal studies to human physiology and disease.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Transcriptoma , Animais , Humanos , Camundongos , Imunidade Adaptativa/genética , Macrófagos , Suínos , Peixe-Zebra/genética , Imunidade Inata/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA