Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Breed ; 44(5): 32, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685957

RESUMO

Compared to japonica, the lower genetic transformation efficiency of indica is a technical bottleneck for rice molecular breeding. Specifically, callus browning frequently occurs during the culture of the elite indica variety 93-11, leading to poor culturability and lower genetic transformation efficiency. Here, 67 QTLs related to culturability were detected using 97 introgression lines (designated as 9DILs) derived from Dongxiang common wild rice (DXCWR, Oryza rufipogon Griff.) with 93-11 genetic background, explaining 4% ~12% of the phenotypic variations. The QTL qCBT9 on chromosome 9 was a primary QTL for reducing callus browning derived from DXCWR. Five 9DILs with light callus browning and high differentiation were screened. We evaluated the callus browning index (CBI) of 100 F2 population crossed of 93-11 and 9DIL71 and the recombinant plants screened from 3270 individuals. The qCBT9 was delimited to a ~148kb region between the markers X16 and X23. RNA-seq analysis of DEGs between 9DIL71 and 93-11 showed three upregulated DEGs (Os09g0526500, Os09g0527900, Os09g0528200,) and three downregulated DEGs (Os09g0526700, Os09g0526800, Os09g0527700) were located in the candidate region of qCBT9. Furthermore, callus browning may be involved in cell senescence and death caused by oxidative stress. The differentiation of indica and japonica in this region suggested that qCBT9 was possibly a vital QTL contributed to better culturability of japonica. Our results laid a foundation for further cloning of the gene for reduced callus browning in O. rufipogon, and also provided a new genetic resource and material basis for improving the culturability and genetic transformation efficiency of cultivated rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01470-z.

2.
Plant Mol Biol ; 111(3): 263-273, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36414883

RESUMO

Zinc (Zn) deficiency, caused by inadequate Zn intake in the human diet, has serious health implications. Rice (Oryza sativa) is the staple food in regions with a high incidence of Zn deficiency, so raising Zn levels in rice grain could help alleviate Zn deficiency. The wild relatives of cultivated rice vary widely in grain Zn content and thus are suitable resources for improving this trait. However, few loci underlying grain Zn content have been identified in wild rice relatives. Here, we identified a major quantitative trait locus for grain Zn content, Grain Zn Content 1 (qGZnC1), from Yuanjiang common wild rice (Oryza rufipogon Griff.) using map-based cloning. Down-regulating GZnC1 expression reduced the grain Zn content, whereas the presence of GZnC1 had the opposite effect, indicating that GZnC1 is involved in grain Zn content in rice. Notably, GZnC1 is identical to a previously reported gene, EMBRYO SAC ABORTION 1 (ESA1), involved in seed setting rate. The mutation in GZnC1/ESA1 at position 1819 (T1819C) causes delayed termination of protein translation. In addition, GZnC1 is specifically expressed in developing panicles. Several genes related to Zn-transporter genes were up-regulated in the presence of GZnC1. Our results suggest that GZnC1 activates Zn transporters to promote Zn distribution in panicles. Our work thus sheds light on the genetic mechanism of Zn accumulation in rice grain and provides a new genetic resource for improving Zn content in rice.


Assuntos
Oryza , Humanos , Oryza/genética , Grão Comestível/genética , Locos de Características Quantitativas , Fenótipo , Zinco/metabolismo
3.
Plant Biotechnol J ; 21(5): 931-942, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36610008

RESUMO

African cultivated rice (Oryza glaberrima Steud.) was domesticated from its wild progenitor species (Oryza barthii) about 3000 years ago. Seed shattering is one of the main constraints on grain production in African cultivated rice, which causes severe grain losses during harvest. By contrast, Asian cultivated rice (Oryza sativa) displays greater resistance to seed shattering, allowing higher grain production. A better understanding in regulation of seed shattering would help to improve harvesting efficiency in African cultivated rice. Here, we report the map-based cloning and characterization of OgSH11, a MYB transcription factor controlling seed shattering in O. glaberrima. OgSH11 represses the expression of lignin biosynthesis genes and lignin deposition by binding to the promoter of GH2. We successfully developed a new O. glaberrima material showing significantly reduced seed shattering by knockout of SH11 in O. glaberrima using CRISPR-Cas9 mediated approach. Identification of SH11 not only supplies a new target for seed shattering improvement in African cultivated rice, but also provides new insights into the molecular mechanism of abscission layer development.


Assuntos
Oryza , Lignina/genética , Sementes , Grão Comestível/genética , Fatores de Transcrição/genética
4.
New Phytol ; 240(1): 372-381, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37475167

RESUMO

Surface-localized pattern recognition receptors perceive pathogen-associated molecular patterns (PAMPs) to activate pattern-triggered immunity (PTI). Activation of mitogen-activated protein kinases (MAPKs) represents a major PTI response. Here, we report that Arabidopsis thaliana PIF3 negatively regulates plant defense gene expression and resistance to Pseudomonas syringae DC3000. PAMPs trigger phosphorylation of PIF3. Further study reveals that PIF3 interacts with and is phosphorylated by MPK3/6. By mass spectrometry and site-directed mutagenesis, we identified the corresponding phosphorylation sites which fit for SP motif. We further show that a phospho-mimicking PIF3 variant (PIF36D /pifq) conferred increased susceptibility to P. syringae DC3000 and caused lower levels of defense gene expression in plants. Together, this study reveals that PIF3 is phosphorylated by MPK3/6 and phosphorylation of the SP motif residues is required for its negative regulation on plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Arabidopsis/metabolismo , Imunidade Vegetal/genética , Pseudomonas syringae/fisiologia , Doenças das Plantas , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
5.
Mol Biol Rep ; 50(4): 3129-3140, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36692673

RESUMO

BACKGROUND: Genetic transformation of indica rice (Oryza sativa ssp. indica) is limited by callus browning, which results in poor in vitro tissue culturability. Elucidating the genes in common wild rice (Oryza rufipogon Griff.) that control callus browning is fundamental for improving the tissue culturability of indica rice varieties. METHODS AND RESULTS: We used a population of 129 O. rufipogon (Dongxiang common wild rice; DXCWR) introgression lines in the elite cultivar GC2 (Oryza sativa ssp. indica) background and 159 simple sequence repeat (SSR) markers to identify quantitative trait loci (QTLs) associated with callus browning. We evaluated callus browning based on the indices of callus browning rate (CBR), callus browning index (CBI), and standard callus browning index (SCBI). CONCLUSIONS: We detected 30 QTLs associated with callus browning across all lines, mapping to chromosomes 1, 2, 3, 4, 8, 9, and 12. These genomic regions were repeatedly associated with differences in CBR, CBI, and SCBI. The alleles from DXCWR showed additive effects in reducing callus browning. We identified new QTLs near the markers RM247 and RM7003 on chromosome 12, indicating that these QTLs are unique to DXCWR. Furthermore, we identified six introgression lines with significantly lower callus browning. These lines will be useful germplasms for genetic transformation and fine-mapping of the culturability trait.


Assuntos
Oryza , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Oryza/genética , Cromossomos de Plantas/genética , Fenótipo , Alelos
6.
Plant Cell ; 31(1): 17-36, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626621

RESUMO

The elimination of seed shattering was a crucial event during crop domestication. Improving and fine-tuning the regulation of this process will further enhance grain yield by avoiding seed losses during crop production. In this work, we identified the loss-of-shattering mutant suppression of shattering1 (ssh1) through a screen of mutagenized wild rice (Oryza rufipogon) introgression lines with naturally high shattering. Using the MutMap approach and transformation experiments, we isolated a genetic factor for seed shattering, SSH1, which is an allele of SUPERNUMERARY BRACT (SNB), a gene encoding a plant-specific APETALA2-like transcription factor. A C-to-A point mutation in the ninth intron of SNB altered the splicing of its messenger RNA, causing the reduced shattering of the ssh1 mutant by altering the development of the abscission layer and vascular bundle at the junction between the seed and the pedicel. Our data suggest that SNB positively regulates the expression of two rice REPLUMLESS orthologs, qSH1 and SH5 In addition, the ssh1 mutant had larger seeds and a higher grain weight, resulting from its increased elongation of the glume longitudinal cells. The further identification of favorable SNB alleles will be valuable for improving rice seed shattering and grain yield using molecular breeding strategies.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Mutação/genética , Oryza/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Sementes/genética , Fatores de Transcrição/genética
7.
Plant J ; 104(3): 596-612, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32748498

RESUMO

Asian cultivated rice (Oryza sativa) and African cultivated rice (Oryza glaberrima) originated from the wild rice species Oryza rufipogon and Oryza barthii, respectively. The genomes of both cultivated species have undergone profound changes during domestication. Whole-genome de novo assemblies of O. barthii, O. glaberrima, O. rufipogon and Oryza nivara, produced using PacBio single-molecule real-time (SMRT) and next-generation sequencing (NGS) technologies, showed that Gypsy-like retrotransposons are the major contributors to genome size variation in African and Asian rice. Through the detection of genome-wide structural variations (SVs), we observed that besides 28 shared SV hot spots, another 67 hot spots existed in either the Asian or African rice genomes. Based on gene annotation information of the SVs, we established that organelle-to-nucleus DNA transfers resulted in numerous SVs that participated in the nuclear genome divergence of rice species and subspecies. We detected 52 giant nuclear integrants of organelle DNA (NORGs, defined as >10 kb) in six Oryza AA genomes. In addition, we developed an effective method to genotype giant NORGs, based on genome assembly, and first showed the dynamic change in the distribution of giant NORGs in rice natural population. Interestingly, 16 highly differentiated giant NORGs tended to accumulate in natural populations of Asian rice from higher latitude regions, grown at lower temperatures and light intensities. Our study provides new insight into the genome divergence of African and Asian rice, and establishes that organelle-to-nucleus DNA transfers, as potentially powerful contributors to environmental adaptation during rice evolution, play a major role in producing SVs in rice genomes.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Oryza/genética , Núcleo Celular/metabolismo , Variação Genética/genética , Oryza/metabolismo
8.
Plant Biotechnol J ; 19(1): 64-73, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32628357

RESUMO

Tiller angle, an important component of plant architecture, greatly influences the grain yield of rice (Oryza sativa L.). Here, we identified Tiller Angle Control 4 (TAC4) as a novel regulator of rice tiller angle. TAC4 encodes a plant-specific, highly conserved nuclear protein. The loss of TAC4 function leads to a significant increase in the tiller angle. TAC4 can regulate rice shoot gravitropism by increasing the indole acetic acid content and affecting the auxin distribution. A sequence analysis revealed that TAC4 has undergone a bottleneck and become fixed in indica cultivars during domestication and improvement. Our findings facilitate an increased understanding of the regulatory mechanisms of tiller angle and also provide a potential gene resource for the improvement of rice plant architecture.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas , Gravitropismo , Ácidos Indolacéticos , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
J Exp Bot ; 72(4): 1212-1224, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33097962

RESUMO

Photosynthesis and plant architecture are important factors influencing grain yield in rice (Oryza sativa L.). Here, we identified a high-tillering and dwarf 12 (htd12) mutant and analyzed the effects of the HTD12 mutation on these important factors. HTD12 encodes a 15-cis-ζ-carotene isomerase (Z-ISO) belonging to the nitrite and nitric oxide reductase U (NnrU) protein family, as revealed by positional mapping and transformation experiments. Sequence analysis showed that a single nucleotide transition from guanine (G) to adenine (A) in the 3' acceptor site between the first intron and second exon of HTD12 alters its mRNA splicing in htd12 plants, resulting in a 49-amino acid deletion that affects carotenoid biosynthesis and photosynthesis. In addition, compared with the wild type, htd12 had significantly lower concentrations of ent-2'-epi-5-deoxystrigol (epi-5DS), a native strigolactone, in both roots and root exudates, resulting in an obvious increase in tiller number and decrease in plant height. These findings indicate that HTD12, the rice homolog of Z-ISO, regulates chloroplast development and photosynthesis by functioning in carotenoid biosynthesis, and modulates plant architecture by affecting strigolactone concentrations.


Assuntos
Oryza , Fotossíntese , Proteínas de Plantas/fisiologia , cis-trans-Isomerases/fisiologia , Sequência de Aminoácidos , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/enzimologia , Oryza/genética , Proteínas de Plantas/genética , cis-trans-Isomerases/genética
10.
Plant J ; 98(4): 639-653, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30689248

RESUMO

Miniature inverted-repeat transposable elements (MITEs) are structurally homogeneous non-autonomous DNA transposons with high copy numbers that play important roles in genome evolution and diversification. Here, we analyzed the rice high-tillering dwarf (htd) mutant in an advanced backcross population between cultivated and wild rice, and identified an active MITE named miniature Jing (mJing). The mJing element belongs to the PIF/Harbinger superfamily. japonica rice var. Nipponbare and indica var. 93-11 harbor 72 and 79 mJing family members, respectively, have undergone multiple rounds of amplification bursts during the evolution of Asian cultivated rice (Oryza sativa L.). A heterologous transposition experiment in Arabidopsis thaliana indicated that the autonomous element Jing is likely to have provides the transposase needed for mJing mobilization. We identified 297 mJing insertion sites and their presence/absence polymorphism among 71 rice samples through targeted high-throughput sequencing. The results showed that the copy number of mJing varies dramatically among Asian cultivated rice (O. sativa), its wild ancestor (O. rufipogon), and African cultivated rice (O. glaberrima) and that some mJing insertions are subject to directional selection. These findings suggest that the amplification and removal of mJing elements have played an important role in rice genome evolution and species diversification.


Assuntos
Elementos de DNA Transponíveis/genética , Genoma de Planta/genética , Oryza/genética , Proteínas de Arabidopsis , Sequência de Bases , Genes de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transposases
11.
Plant Biotechnol J ; 18(3): 756-769, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31469486

RESUMO

Nonspecific lipid transfer proteins (nsLTPs) play critical roles in plant development and response to abiotic stresses. Here, we found that a rice lipid transfer protein, OsLTPL159, was associated with cold tolerance at the early seedling stage. Overexpression of an OsLTPL159IL112 allele from the cold-tolerant introgression line IL112 in either the japonica variety Zhonghua17 (ZH17) or the indica variety Teqing background dramatically enhanced cold tolerance. In addition, down-regulation of the expression of OsLTPL159 in the japonica variety ZH17 by RNA interference (RNAi) significantly decreased cold tolerance. Further transcriptomic, physiological and histological analysis showed that the OsLTPL159IL112 allele likely enhanced the cold tolerance of rice at the early seedling stage by decreasing the toxic effect of reactive oxygen species, enhancing cellulose deposition in the cell wall and promoting osmolyte accumulation, thereby maintaining the integrity of the chloroplasts. Notably, overexpression of another allele, OsLTPL159GC2 , from the recipient parent Guichao 2 (GC2), an indica variety, did not improve cold tolerance, indicating that the variations in the OsLTPL159 coding region of GC2 might disrupt its function for cold tolerance. Further sequence comparison found that all 22 japonica varieties surveyed had an OsLTPL159 haplotype identical to IL112 and were more cold-tolerant than the surveyed indica varieties, implying that the variations in OsLTPL159 might be associated with differential cold tolerance of japonica and indica rice. Therefore, our findings suggest that the OsLTPL159 allele of japonica rice could be used to improve cold tolerance of indica rice through a molecular breeding strategy.


Assuntos
Proteínas de Transporte/fisiologia , Temperatura Baixa , Oryza/fisiologia , Proteínas de Plantas/fisiologia , Estresse Fisiológico , Perfilação da Expressão Gênica , Plântula/fisiologia
12.
Plant Physiol ; 180(1): 356-366, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30770460

RESUMO

The emergence of sterile individuals in the hybrid backcross progeny of wild and cultivated rice limits the use of wild rice alleles for improving cultivated rice, but the molecular mechanisms underlying this sterility remain unclear. Here, we identified the semisterile introgression line YIL42, derived from a cross between the indica rice variety Teqing (Oryza sativa) and Oryza rufipogon accession YJCWR (Yuanjiang common wild rice), which exhibits semisterility. Using positional cloning, we isolated EMBRYO SAC ABORTION 1 (ESA1), which encodes a nuclear-membrane localized protein containing an armadillo repeat domain. A mutation in ESA1 at position 1819 (T1819C) converts a stop codon into an Arg (R) codon, causing delayed termination of protein translation. Analysis of transgenic lines indicated that the difference in ESA1 protein structure between O. rufipogon-derived ESA1 and Teqing-derived esa1 affects female gamete abortion during early mitosis. Fertility investigation and expression analysis indicated that the interaction between ESA1 T1819 and unknown gene(s) of Teqing affects spikelet fertility of the hybrid backcross progeny. The ESA1 T1819 allele is present in O. rufipogon but absent in O. sativa, suggesting that variation in ESA1 may be associated with interspecific hybrid incompatibility between wild and cultivated rice. Our findings provide insight into the molecular mechanism underlying female sterility, which is useful for improving the panicle seed setting rate of rice and for developing a strategy to overcome interspecific hybrid sterility between cultivated rice and wild rice.


Assuntos
Oryza/genética , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Sementes/fisiologia , Quimera , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Mitose , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Domínios Proteicos , Sequências Repetitivas de Aminoácidos , Sementes/genética
13.
Plant J ; 96(4): 716-733, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30101570

RESUMO

Inflorescence branching is a key agronomic trait determining rice yield. The primary branch of the ancestral wild rice (Oryza rufipogon Griff.) bears few grains, due to minimal secondary branching. By contrast, Oryza sativa cultivars have been selected to produce large panicles with more secondary branches. Here we showed that the CONTROL OF SECONDARY BRANCH 1 (COS1) gene, which is identical to FRIZZY PANICLE (FZP), plays an important role in the key transition from few secondary branches in wild rice to more secondary branches in domesticated rice cultivars. A 4-bp tandem repeat deletion approximately 2.7 kb upstream of FZP may affect the binding activities of auxin response factors to the FZP promoter, decrease the expression level of FZP and significantly enhance the number of secondary branches and grain yield in cultivated rice. Functional analyses showed that NARROW LEAF 1 (NAL1), a trypsin-like serine and cysteine protease, interacted with FZP and promoted its degradation. Consistently, downregulating FZP expression or upregulating NAL1 expression in the commercial cultivar Zhonghua 17 increased the number of secondary branches per panicle, grain number per panicle and grain yield per plant. Our findings not only provide insights into the molecular mechanism of increasing grain number and yield during rice domestication, but also offer favorable genes for improving the grain yield of rice.


Assuntos
Domesticação , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas , Inflorescência/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Cisteína Proteases/metabolismo , Grão Comestível/metabolismo , Genes de Plantas/genética , Inflorescência/metabolismo , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteólise , Sequências Reguladoras de Ácido Nucleico/fisiologia , Análise de Sequência , Serina Endopeptidases/metabolismo
14.
Plant J ; 94(4): 661-669, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29537667

RESUMO

Plant architecture is a key agronomical factor determining crop yield and has been a major target of cereal crop domestication. The transition of plant architecture from the prostrate tiller of typical African wild rice (Oryza barthii) to the erect tiller of African cultivated rice (Oryza glaberrima) was a key step during domestication of African rice. Here we show that PROG7 (PROSTRATE GROWTH 7), a zinc-finger transcription factor gene on chromosome 7, is required for the prostrate growth of African wild rice. Mutations in the promoter region of prog7 reduced the level of gene expression in the tiller base, leading to erect growth in African cultivated rice. Sequence comparison and haplotype analysis show that 90 varieties of cultivated rice from 11 countries carry the same mutations in the prog7 region. A strong signal in a 60-kb genomic region was detected around the prog7 gene, suggesting that the region was under strong positive selection during the domestication process. Identification of the PROG7 gene provides new insights into the molecular basis of plant architecture in crops and facilitates investigation of the history of domestication of African rice.


Assuntos
Oryza/genética , Proteínas de Plantas/metabolismo , Evolução Biológica , Clonagem Molecular , Produtos Agrícolas , Domesticação , Grão Comestível , Genes Reporter , Mutação , Oryza/anatomia & histologia , Fenótipo , Proteínas de Plantas/genética , Proteínas Recombinantes de Fusão
15.
Plant Cell ; 28(10): 2453-2463, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27634315

RESUMO

Cultivated rice (Oryza sativa) was domesticated from wild rice (Oryza rufipogon), which typically displays fewer grains per panicle and longer grains than cultivated rice. In addition, wild rice has long awns, whereas cultivated rice has short awns or lacks them altogether. These changes represent critical events in rice domestication. Here, we identified a major gene, GRAIN NUMBER, GRAIN LENGTH AND AWN DEVELOPMENT1 (GAD1), that regulates those critical changes during rice domestication. GAD1 is located on chromosome 8 and is predicted to encode a small secretary signal peptide belonging to the EPIDERMAL PATTERNING FACTOR-LIKE family. A frame-shift insertion in gad1 destroyed the conserved cysteine residues of the peptide, resulting in a loss of function, and causing the increased number of grains per panicle, shorter grains, and awnless phenotype characteristic of cultivated rice. Our findings provide a useful paradigm for revealing functions of peptide signal molecules in plant development and helps elucidate the molecular basis of rice domestication.


Assuntos
Grão Comestível/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Cromossomos de Plantas/genética , Grão Comestível/genética , Mutação da Fase de Leitura/genética , Oryza/genética , Proteínas de Plantas/genética
16.
Genome ; 62(9): 635-642, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31283885

RESUMO

Low temperature is a vital effector of rice at different growth stages. MicroRNAs (miRNAs) play important roles in responding to abiotic and biotic stresses. Here, we confirmed the cold tolerance of Dongxiang common wild rice and explored the miRNAs differentially expressed under cold stress using genome-wide small RNA sequencing. In total, 16 miRNAs, nine upregulated and seven downregulated by cold stress, were characterized in Dongxiang common wild rice, and their target genes were predicted. Additionally, an AgriGO analysis of the target genes revealed that they were enriched in several terms related to cold-stress tolerance, suggesting a complex response mechanism, involving miRNAs, to cold stress in Dongxiang common wild rice.


Assuntos
MicroRNAs/metabolismo , Oryza/genética , RNA de Plantas/metabolismo , Aclimatação/genética , Resposta ao Choque Frio/genética , Oryza/fisiologia , Análise de Sequência de RNA
17.
Plant Cell ; 27(7): 1875-88, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26082172

RESUMO

Common wild rice (Oryza rufipogon), the wild relative of Asian cultivated rice (Oryza sativa), flaunts long, barbed awns, which are necessary for efficient propagation and dissemination of seeds. By contrast, O. sativa cultivars have been selected to be awnless or to harbor short, barbless awns, which facilitate seed processing and storage. The transition from long, barbed awns to short, barbless awns was a crucial event in rice domestication. Here, we show that the presence of long, barbed awns in wild rice is controlled by a major gene on chromosome 4, LONG AND BARBED AWN1 (LABA1), which encodes a cytokinin-activating enzyme. A frame-shift deletion in LABA1 of cultivated rice reduces the cytokinin concentration in awn primordia, disrupting barb formation and awn elongation. Sequencing analysis demonstrated low nucleotide diversity and a selective sweep encompassing an ∼800-kb region around the derived laba1 allele in cultivated rice. Haplotype analysis revealed that the laba1 allele originated in the japonica subspecies and moved into the indica gene pool via introgression, suggesting that humans selected for this locus in early rice domestication. Identification of LABA1 provides new insights into rice domestication and also sheds light on the molecular mechanism underlying awn development.


Assuntos
Produtos Agrícolas/genética , Genes de Plantas , Oryza/anatomia & histologia , Oryza/genética , Proteínas de Plantas/genética , Alelos , Cromossomos de Plantas/genética , Clonagem Molecular , Produtos Agrícolas/crescimento & desenvolvimento , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Variação Genética , Haplótipos/genética , Nucleotídeos/genética , Oryza/crescimento & desenvolvimento , Oryza/ultraestrutura , Fenótipo , Mapeamento Físico do Cromossomo , Proteínas de Plantas/metabolismo , Seleção Genética , Transcrição Gênica
18.
Plant J ; 81(3): 367-76, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25439309

RESUMO

Nitrogen (N), the most important mineral nutrient for plants, is critical to agricultural production systems. N deficiency severely affects rice growth and decreases rice yields. However, excessive use of N fertilizer has caused severe pollution to agricultural and ecological environments. The necessity of breeding of crops that require lower input of N fertilizer has been recognized. Here we identified a major quantitative trait locus on chromosome 12, Tolerance Of Nitrogen Deficiency 1 (TOND1), that confers tolerance to N deficiency in the indica cultivar Teqing. Sequence verification of 75 indica and 75 japonica cultivars from 18 countries and regions demonstrated that only 27.3% of cultivars (41 indica cultivars) contain TOND1, whereas 72.7% of cultivars, including the remaining 34 indica cultivars and all 75 japonica cultivars, do not harbor the TOND1 allele. Over-expression of TOND1 increased the tolerance to N deficiency in the TOND1-deficient rice cultivars. The identification of TOND1 provides a molecular basis for breeding rice varieties with improved grain yield despite decreased input of N fertilizers.


Assuntos
Produtos Agrícolas/genética , Nitrogênio/metabolismo , Oryza/genética , Proteínas de Plantas/fisiologia , Locos de Características Quantitativas , Agricultura , Cruzamento , Mapeamento Cromossômico , Cromossomos de Plantas , Produtos Agrícolas/metabolismo , Poluição Ambiental/prevenção & controle , Fertilizantes , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Plant J ; 83(3): 528-36, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26095647

RESUMO

Plant architecture, a complex of the important agronomic traits that determine grain yield, is a primary target of artificial selection of rice domestication and improvement. Some important genes affecting plant architecture and grain yield have been isolated and characterized in recent decades; however, their underlying mechanism remains to be elucidated. Here, we report genetic identification and functional analysis of the PLANT ARCHITECTURE AND YIELD 1 (PAY1) gene in rice, which affects plant architecture and grain yield in rice. Transgenic plants over-expressing PAY1 had twice the number of grains per panicle and consequently produced nearly 38% more grain yield per plant than control plants. Mechanistically, PAY1 could improve plant architecture via affecting polar auxin transport activity and altering endogenous indole-3-acetic acid distribution. Furthermore, introgression of PAY1 into elite rice cultivars, using marker-assisted background selection, dramatically increased grain yield compared with the recipient parents. Overall, these results demonstrated that PAY1 could be a new beneficial genetic resource for shaping ideal plant architecture and breeding high-yielding rice varieties.


Assuntos
Oryza/crescimento & desenvolvimento , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Dados de Sequência Molecular
20.
Plant Biotechnol J ; 14(1): 377-86, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25923523

RESUMO

Panicle architecture and seed size are important agronomic traits that directly determine grain yield in rice (Oryza sativa L.). Although a number of key genes controlling panicle architecture and seed size have been cloned and characterized in recent years, their genetic and molecular mechanisms remain unclear. In this study, we identified a mutant that produced panicles with fascicled primary branching and reduced seeds in size. We isolated the underlying CLUSTERED PRIMARY BRANCH 1 (CPB1) gene, a new allele of DWARF11 (D11) encoding a cytochrome P450 protein involved in brassinosteroid (BR) biosynthesis pathway. Genetic transformation experiments confirmed that a His360Leu amino acid substitution residing in the highly conserved region of CPB1/D11 was responsible for the panicle architecture and seed size changes in the cpb1 mutants. Overexpression of CPB1/D11 under the background of cpb1 mutant not only rescued normal panicle architecture and plant height, but also had a larger leaf angle and seed size than the controls. Furthermore, the CPB1/D11 transgenic plants driven by panicle-specific promoters can enlarge seed size and enhance grain yield without affecting other favourable agronomic traits. These results demonstrated that the specific mutation in CPB1/D11 influenced development of panicle architecture and seed size, and manipulation of CPB1/D11 expression using the panicle-specific promoter could be used to increase seed size, leading to grain yield improvement in rice.


Assuntos
Alelos , Genes de Plantas , Oryza/anatomia & histologia , Oryza/genética , Proteínas de Plantas/genética , Caules de Planta/anatomia & histologia , Sementes/anatomia & histologia , Sequência de Aminoácidos , Brassinosteroides/metabolismo , Mapeamento Cromossômico , Clonagem Molecular , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Mutação/genética , Tamanho do Órgão/genética , Especificidade de Órgãos/genética , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Sementes/genética , Homologia de Sequência de Aminoácidos , Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA