Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Wei Sheng Yan Jiu ; 53(2): 294-299, 2024 Mar.
Artigo em Zh | MEDLINE | ID: mdl-38604967

RESUMO

OBJECTIVE: To establish an analytical method for determining the migration of 24 elements in Yixing clay pottery in 4% acetic acid simulated solution by inductively coupled plasma mass spectrometry. METHODS: Four types of Yixing clay pottery, including Yixing clay teapot, Yixing clay kettle, Yixing clay pot, and Yixing clay electric stew pot, were immersed in 4% acetic acid as a food simulant for testing. The migration amount of 24 elements in the migration solution was determined using inductively coupled plasma mass spectrometry. RESULTS: Lithium, magnesium, aluminum, iron, and barium elements with a mass concentration of 1000 µg/L; Lead, cadmium, total arsenic, chromium, nickel, copper, vanadium, manganese, antimony, tin, zinc, cobalt, molybdenum, silver, beryllium, thallium, titanium, and strontium elements within 100 µg/L there was a linear relationship within, the r value was between 0.998 739 and 0.999 989. Total mercury at 5.0 µg/L, there was a linear relationship within, the r value of 0.995 056. The detection limit of the elements measured by this method was between 0.5 and 45.0 µg/L, the recovery rate was 80.6%-108.9%, and the relative standard deviation was 1.0%-4.8%(n=6). A total of 32 samples of four types of Yixing clay pottery sold on the market, including teapots, boiling kettles, casseroles, and electric stewing pots, were tested. It was found that the migration of 16 elements, including beryllium, titanium, chromium, nickel, cobalt, zinc, silver, cadmium, antimony, total mercury, thallium, tin, copper, total arsenic, molybdenum, and lead, were lower than the quantitative limit. The element with the highest migration volume teapot was aluminum, magnesium, and barium; The kettle was aluminum and magnesium; Casserole was aluminum, magnesium, and lithium; The electric stew pot was aluminum. CONCLUSION: This method is easy to operate and has high accuracy, providing an effective and feasible detection method for the determination and evaluation of element migration in Yixing clay pottery.


Assuntos
Arsênio , Mercúrio , Oligoelementos , Acetatos , Alumínio/análise , Antimônio/análise , Arsênio/análise , Bário/análise , Berílio/análise , Cádmio/análise , Cromo , Argila , Cobalto/análise , Cobre , Lítio/análise , Magnésio , Espectrometria de Massas , Mercúrio/análise , Molibdênio/análise , Níquel , Prata/análise , Tálio/análise , Estanho/análise , Titânio/análise , Oligoelementos/análise , Zinco , China
2.
Haematologica ; 103(2): 361-372, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29079593

RESUMO

Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1-7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13C1-aspartate or 13C5-adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and - preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates.


Assuntos
Eritrócitos/metabolismo , Hipoxantina/sangue , Hipóxia , Purinas/metabolismo , Animais , Preservação de Sangue/métodos , Desaminação , Transfusão de Eritrócitos , Humanos , Camundongos , Camundongos Endogâmicos C57BL
3.
Wei Sheng Yan Jiu ; 47(4): 634-637, 2018 Jul.
Artigo em Zh | MEDLINE | ID: mdl-30081993

RESUMO

OBJECTIVE: The pretreatment method was studied to solve the disagreement of aluminum in the reference substances between detection and the value of the certificate. METHODS: The pretreatment method of wet digestion with nitric acid, microwave digestion of hydrogen fluoride and dry ashing at different temperatures were used to determine aluminum in the reference substances by plasma emission spectrometry. RESULTS: Pretreatment method affected the test result of aluminum in reference substances directly. The result showed that wet digestion with nitric acid and dry ashing at 500-550 ℃ could not reach the value of the certificate of reference substances, meanwhile microwave digestion of hydrogen fluoride( HNO_3-HF-H_2O_2= 8 : 1 : 1, V/V/V) and dry ashing at more higher temperature( 800-950 ℃) could meet the testing requirements. CONCLUSION: The determination of aluminum in reference substances is recommended by hydrofluoric acid system digestion or higher temperature ashing method to ensure the accuracy of the test result.


Assuntos
Alumínio/análise , Temperatura Alta , Micro-Ondas , Espectrofotometria Atômica/métodos
4.
Circulation ; 134(5): 405-21, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27482003

RESUMO

BACKGROUND: High altitude is a challenging condition caused by insufficient oxygen supply. Inability to adjust to hypoxia may lead to pulmonary edema, stroke, cardiovascular dysfunction, and even death. Thus, understanding the molecular basis of adaptation to high altitude may reveal novel therapeutics to counteract the detrimental consequences of hypoxia. METHODS: Using high-throughput, unbiased metabolomic profiling, we report that the metabolic pathway responsible for production of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), a negative allosteric regulator of hemoglobin-O2 binding affinity, was significantly induced in 21 healthy humans within 2 hours of arrival at 5260 m and further increased after 16 days at 5260 m. RESULTS: This finding led us to discover that plasma adenosine concentrations and soluble CD73 activity rapidly increased at high altitude and were associated with elevated erythrocyte 2,3-BPG levels and O2 releasing capacity. Mouse genetic studies demonstrated that elevated CD73 contributed to hypoxia-induced adenosine accumulation and that elevated adenosine-mediated erythrocyte A2B adenosine receptor activation was beneficial by inducing 2,3-BPG production and triggering O2 release to prevent multiple tissue hypoxia, inflammation, and pulmonary vascular leakage. Mechanistically, we demonstrated that erythrocyte AMP-activated protein kinase was activated in humans at high altitude and that AMP-activated protein kinase is a key protein functioning downstream of the A2B adenosine receptor, phosphorylating and activating BPG mutase and thus inducing 2,3-BPG production and O2 release from erythrocytes. Significantly, preclinical studies demonstrated that activation of AMP-activated protein kinase enhanced BPG mutase activation, 2,3-BPG production, and O2 release capacity in CD73-deficient mice, in erythrocyte-specific A2B adenosine receptor knockouts, and in wild-type mice and in turn reduced tissue hypoxia and inflammation. CONCLUSIONS: Together, human and mouse studies reveal novel mechanisms of hypoxia adaptation and potential therapeutic approaches for counteracting hypoxia-induced tissue damage.


Assuntos
Proteínas Quinases Ativadas por AMP/sangue , Adaptação Fisiológica/fisiologia , Doença da Altitude/sangue , Eritrócitos/metabolismo , Receptor A2B de Adenosina/sangue , 2,3-Difosfoglicerato/sangue , 5'-Nucleotidase/sangue , 5'-Nucleotidase/deficiência , Lesão Pulmonar Aguda/fisiopatologia , Adenosina/sangue , Adulto , Doença da Altitude/enzimologia , Doença da Altitude/fisiopatologia , Animais , Bisfosfoglicerato Mutase/sangue , Ativação Enzimática , Proteínas Ligadas por GPI/sangue , Humanos , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/sangue , Fosforilação , Processamento de Proteína Pós-Traducional
5.
Blood ; 125(10): 1643-52, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25587035

RESUMO

Erythrocyte possesses high sphingosine kinase 1 (SphK1) activity and is the major cell type supplying plasma sphingosine-1-phosphate, a signaling lipid regulating multiple physiological and pathological functions. Recent studies revealed that erythrocyte SphK1 activity is upregulated in sickle cell disease (SCD) and contributes to sickling and disease progression. However, how erythrocyte SphK1 activity is regulated remains unknown. Here we report that adenosine induces SphK1 activity in human and mouse sickle and normal erythrocytes in vitro. Next, using 4 adenosine receptor-deficient mice and pharmacological approaches, we determined that the A2B adenosine receptor (ADORA2B) is essential for adenosine-induced SphK1 activity in human and mouse normal and sickle erythrocytes in vitro. Subsequently, we provide in vivo genetic evidence that adenosine deaminase (ADA) deficiency leads to excess plasma adenosine and elevated erythrocyte SphK1 activity. Lowering adenosine by ADA enzyme therapy or genetic deletion of ADORA2B significantly reduced excess adenosine-induced erythrocyte SphK1 activity in ADA-deficient mice. Finally, we revealed that protein kinase A-mediated extracellular signal-regulated kinase 1/2 activation functioning downstream of ADORA2B underlies adenosine-induced erythrocyte SphK1 activity. Overall, our findings reveal a novel signaling network regulating erythrocyte SphK1 and highlight innovative mechanisms regulating SphK1 activity in normal and SCD.


Assuntos
Adenosina/sangue , Anemia Falciforme/sangue , Anemia Falciforme/enzimologia , Eritrócitos Anormais/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/sangue , Receptor A2B de Adenosina/sangue , Adenosina Desaminase/sangue , Adenosina Desaminase/deficiência , Adenosina Desaminase/genética , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Agamaglobulinemia/sangue , Agamaglobulinemia/enzimologia , Agamaglobulinemia/genética , Anemia Falciforme/genética , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/sangue , Eritrócitos/efeitos dos fármacos , Eritrócitos/enzimologia , Eritrócitos/metabolismo , Eritrócitos Anormais/efeitos dos fármacos , Eritrócitos Anormais/enzimologia , Hemoglobina Falciforme/genética , Hemoglobina Falciforme/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Receptor A2B de Adenosina/deficiência , Receptor A2B de Adenosina/genética , Imunodeficiência Combinada Severa/sangue , Imunodeficiência Combinada Severa/enzimologia , Imunodeficiência Combinada Severa/genética , Transdução de Sinais
6.
J Proteome Res ; 15(10): 3883-3895, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27646145

RESUMO

Red blood cells (RBCs) are key players in systemic oxygen transport. RBCs respond to in vitro hypoxia through the so-called oxygen-dependent metabolic regulation, which involves the competitive binding of deoxyhemoglobin and glycolytic enzymes to the N-terminal cytosolic domain of band 3. This mechanism promotes the accumulation of 2,3-DPG, stabilizing the deoxygenated state of hemoglobin, and cytosol acidification, triggering oxygen off-loading through the Bohr effect. Despite in vitro studies, in vivo adaptations to hypoxia have not yet been completely elucidated. Within the framework of the AltitudeOmics study, erythrocytes were collected from 21 healthy volunteers at sea level, after exposure to high altitude (5260 m) for 1, 7, and 16 days, and following reascent after 7 days at 1525 m. UHPLC-MS metabolomics results were correlated to physiological and athletic performance parameters. Immediate metabolic adaptations were noted as early as a few hours from ascending to >5000 m, and maintained for 16 days at high altitude. Consistent with the mechanisms elucidated in vitro, hypoxia promoted glycolysis and deregulated the pentose phosphate pathway, as well purine catabolism, glutathione homeostasis, arginine/nitric oxide, and sulfur/H2S metabolism. Metabolic adaptations were preserved 1 week after descent, consistently with improved physical performances in comparison to the first ascendance, suggesting a mechanism of metabolic memory.


Assuntos
Adaptação Fisiológica , Doença da Altitude/metabolismo , Eritrócitos/metabolismo , Aclimatação/fisiologia , Adulto , Altitude , Doença da Altitude/fisiopatologia , Arginina/metabolismo , Glutationa/metabolismo , Glicólise , Voluntários Saudáveis , Humanos , Via de Pentose Fosfato , Purinas/metabolismo , Enxofre/metabolismo , Fatores de Tempo , Adulto Jovem
7.
Circulation ; 131(8): 730-41, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25538227

RESUMO

BACKGROUND: Preeclampsia is a prevalent hypertensive disorder of pregnancy and a leading cause of maternal and neonatal morbidity and mortality worldwide. This pathogenic condition is speculated to be caused by placental abnormalities that contribute to the maternal syndrome. However, the specific factors and signaling pathways that lead to impaired placentas and maternal disease development remain elusive. METHODS AND RESULTS: Using 2 independent animal models of preeclampsia (genetically engineered pregnant mice with elevated adenosine exclusively in placentas and a pathogenic autoantibody-induced preeclampsia mouse model), we demonstrated that chronically elevated placental adenosine was sufficient to induce hallmark features of preeclampsia, including hypertension, proteinuria, small fetuses, and impaired placental vasculature. Genetic and pharmacological approaches revealed that elevated placental adenosine coupled with excessive A2B adenosine receptor (ADORA2B) signaling contributed to the development of these features of preeclampsia. Mechanistically, we provided both human and mouse evidence that elevated placental CD73 is a key enzyme causing increased placental adenosine, thereby contributing to preeclampsia. CONCLUSIONS: We determined that elevated placental adenosine signaling is a previously unrecognized pathogenic factor for preeclampsia. Moreover, our findings revealed the molecular basis underlying the elevation of placental adenosine and the detrimental role of excess placental adenosine in the pathophysiology of preeclampsia, and thereby, we highlight novel therapeutic targets.


Assuntos
Adenosina/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/etiologia , Pré-Eclâmpsia/fisiopatologia , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia , 5'-Nucleotidase/metabolismo , Adenosina Desaminase/deficiência , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Adulto , Animais , Autoanticorpos/efeitos adversos , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/fisiopatologia , Deleção de Genes , Humanos , Camundongos Knockout , Pré-Eclâmpsia/induzido quimicamente , Gravidez , Receptor A2B de Adenosina/genética , Receptor A2B de Adenosina/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
Circ Res ; 112(11): 1466-78, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23584256

RESUMO

RATIONALE: Hypertension is the most prevalent life-threatening disease worldwide and is frequently associated with chronic kidney disease (CKD). However, the molecular basis underlying hypertensive CKD is not fully understood. OBJECTIVE: We sought to identify specific factors and signaling pathways that contribute to hypertensive CKD and thereby exacerbate disease progression. METHODS AND RESULTS: Using high-throughput quantitative reverse-transcription polymerase chain reaction profiling, we discovered that the expression level of 5'-ectonucleotidase (CD73), a key enzyme that produces extracellular adenosine, was significantly increased in the kidneys of angiotensin II-infused mice, an animal model of hypertensive nephropathy. Genetic and pharmacological studies in mice revealed that elevated CD73-mediated excess renal adenosine preferentially induced A2B adenosine receptor (ADORA2B) production and that enhanced kidney ADORA2B signaling contributes to angiotensin II-induced hypertension. Similarly, in humans, we found that CD73 and ADORA2B levels were significantly elevated in the kidneys of CKD patients compared with normal individuals and were further elevated in hypertensive CKD patients. These findings led us to further discover that elevated renal CD73 contributes to excess adenosine signaling via ADORA2B activation that directly stimulates endothelin-1 production in a hypoxia-inducible factor-α-dependent manner and underlies the pathogenesis of the disease. Finally, we revealed that hypoxia-inducible factor-α is an important factor responsible for angiotensin II-induced CD73 and ADORA2B expression at the transcriptional level. CONCLUSIONS: Overall, our studies reveal that angiotensin II-induced renal CD73 promotes the production of renal adenosine that is a prominent driver of hypertensive CKD by enhanced ADORA2B signaling-mediated endothelin-1 induction in a hypoxia-inducible factor-α-dependent manner. The inhibition of excess adenosine-mediated ADORA2B signaling represents a novel therapeutic target for the disease.


Assuntos
5'-Nucleotidase/metabolismo , Hipertensão Renal/metabolismo , Rim/metabolismo , Receptor A2B de Adenosina/metabolismo , 5'-Nucleotidase/genética , Adenosina/metabolismo , Adulto , Angiotensina II/farmacologia , Animais , Células Cultivadas , Doença Crônica , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Endotelina-1/metabolismo , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica/fisiologia , Humanos , Hipertensão Renal/induzido quimicamente , Hipertensão Renal/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Receptor A2B de Adenosina/genética , Transdução de Sinais/fisiologia , Vasoconstritores/farmacologia
9.
Curr Opin Hematol ; 20(3): 215-21, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23549375

RESUMO

PURPOSE OF REVIEW: Sickle cell disease (SCD) is a devastating genetic disorder caused by a single amino acid substitution in ß-globin. Although the condition was first described more than a 100 years ago, treatment options remain scarce and unsatisfactory. This review summarizes recent findings that may provide novel insight into therapeutic approaches to SCD treatment. RECENT FINDINGS: Because of insufficient numbers of erythrocytes for oxygen delivery, SCD patients constantly face hypoxia. Adenosine is well known as a key signaling nucleoside that orchestrates a multifaceted physiological response to hypoxia. Recent studies have revealed that adenosine concentrations are significantly elevated in SCD and contribute to disease pathology by activating adenosine receptors on red blood cells. Apart from adenosine, hypoxia also causes hemoglobin release via hemolysis. Studies on free hemoglobin in circulation have uncovered another two important molecules: nitric oxide and heme oxygenase-1. SUMMARY: The core of SCD pathology is erythrocyte sickling under hypoxic conditions, leading to vaso-occlusion and hemolysis. Deeper and more comprehensive understanding of SCD as a disease of hypoxia will provide us new therapeutic targets for SCD treatment.


Assuntos
Adenosina/fisiologia , Anemia Falciforme/complicações , Hipóxia/etiologia , Anemia Falciforme/metabolismo , Anemia Falciforme/fisiopatologia , Animais , Hemoglobinas/metabolismo , Humanos , Hipóxia/fisiopatologia
10.
Int J Biol Macromol ; 237: 124081, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934814

RESUMO

In order to improve the utilization of industrial lignin as an effective component for ultraviolet (UV) shielding, organic solvent (methanol, ethanol, and acetone) fractionation was applied to improve its UV absorption performance and reduce its apparent color. Physicochemical properties of lignin and lignin-based sunscreens, such as molar mass fraction, functional group content, color change and UV shielding properties, were characterized in detail by GPC, UV spectroscopy, 31P NMR and HSQC-NMR spectroscopy. The results showed that the color and UV-shielding properties of the soluble fraction were significantly superior to those of the original and insoluble fractions. Different lignin fractions were acted as the only active substance in the pure cream and its UV-shielding properties were compared. Among them, the composite sunscreen by adding 5 wt% acetone fractionated lignin had highest sun protection factor (SPF) value of 6.6, approximately 4.5 times higher than those sunscreens mixed with pristine lignin. Overall, this work offers the potential of industrial lignin in value-added applications such as UV protection and cosmetics.


Assuntos
Lignina , Protetores Solares , Protetores Solares/química , Lignina/química , Acetona , Solventes/química , Espectroscopia de Ressonância Magnética , Raios Ultravioleta
11.
Blood Adv ; 7(8): 1379-1393, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36469038

RESUMO

Blood storage promotes the rapid depletion of red blood cell (RBC) high-energy adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (DPG), which are critical regulators of erythrocyte physiology and function, as well as oxygen kinetics and posttransfusion survival. Sphingosine-1-phosphate (S1P) promotes fluxes through glycolysis. We hypothesized that S1P supplementation to stored RBC units would improve energy metabolism and posttransfusion recovery. We quantified S1P in 1929 samples (n = 643, storage days 10, 23, and 42) from the REDS RBC Omics study. We then supplemented human and murine RBCs from good storer (C57BL6/J) and poor storer strains (FVB) with S1P (1, 5, and 10 µM) before measurements of metabolism and posttransfusion recovery. Similar experiments were repeated for mice with genetic ablation of the S1P biosynthetic pathway (sphingosine kinase 1 [Sphk1] knockout [KO]). Sample analyses included metabolomics at steady state, tracing experiments with 1,2,3-13C3-glucose, proteomics, and analysis of end-of-storage posttransfusion recovery, under normoxic and hypoxic storage conditions. Storage promoted decreases in S1P levels, which were the highest in units donated by female or older donors. Supplementation of S1P to human and murine RBCs boosted the steady-state levels of glycolytic metabolites and glycolytic fluxes, ie the generation of ATP and DPG, at the expense of the pentose phosphate pathway. Lower posttransfusion recovery was observed upon S1P supplementation. All these phenomena were reversed in Sphk1 KO mice or with hypoxic storage. S1P is a positive regulator of energy metabolism and a negative regulator of antioxidant metabolism in stored RBCs, resulting in lower posttransfusion recoveries in murine models.


Assuntos
Transfusão de Eritrócitos , Eritrócitos , Humanos , Feminino , Camundongos , Animais , Transfusão de Eritrócitos/métodos , Eritrócitos/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/metabolismo , Camundongos Knockout , Hipóxia/metabolismo
12.
RSC Adv ; 13(28): 19039-19045, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37362341

RESUMO

Organic-inorganic hybrid low-dimensional lead halides have garnered significant interest in the realm of solid-state optical materials due to their unique properties and potential applications. In this study, we report the synthesis, characterization and application of Mn2+-doped one-dimensional (1D) [AEP]PbCl5·H2O hybrid lead halide perovskites with tunable photoluminescence properties. The Mn2+ doping leads to a redshift of the dominant emission wavelength from 463 nm to 630 nm, with the optimal doping concentration resulting in an enhanced photoluminescence quantum yield (PLQY) from less than 1% to 8.96%. The structural and optical stability of these doped perovskites have been thoroughly investigated revealing excellent performance under humid and high-temperature conditions. Perovskite-PVP composite films exhibit high crystallization and bright orange-red emission under UV excitation. Furthermore, we demonstrate the successful fabrication of a white LED device using the Mn2+-doped perovskite in combination with commercial green and blue phosphors. The fabricated LED exhibits a high color rendering index (CRI) of 87.2 and stable electroluminescence performance under various operating currents and extended operation times. Our findings highlight the potential of Mn2+-doped 1D hybrid lead halide perovskites as efficient and stable phosphors for high-performance white light emitting diodes and other optoelectronic applications.

13.
J Adv Res ; 37: 119-131, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35499042

RESUMO

Introduction: O-linked ß-D-N-acetylglucosamine (O-GlcNAc) modification is a post-translational modification in which a single O-GlcNAc is added to serine or threonine residues in nuclear, cytoplasmic, and mitochondrial proteins, and is involved in a variety of physiological processes. Objectives: In the present study, the role of O-GlcNAcylation in embryo implantation was evaluated. Furthermore, whether O-GlcNAcylation is involved in orchestrating glucose metabolism to influence endometrial cell physiological functions was investigated. Methods: Different endometrial tissues were detected using immunohistochemistry. Pregnant mouse models were established to verify molecular expression. O-GlcNAc transferase and aquaporin 3 (AQP3) knockdown were used to detect embryo implantation efficiency in vitro and in vivo. Western blotting and immunofluorescence were used to detect protein expression and stability. Dual luciferase reporter assay and chromatin immunoprecipitation (ChIP) were used to verify the binding transcription factor. Glycolysis was detected using bioenergy analyzer, and metabolites were analyzed using isotope 13C-labeled LC-MS. Metabolic-related genes were determined using RNA sequencing. Results: Activation of endometrial hexosamine biosynthetic pathway (HBP) caused elevated O-GlcNAcylation during the window of implantation, affecting endometrial cell function and embryo implantation. Specifically, elevated O-GlcNAcylation increased glucose uptake via glucose transporter 1 (GLUT1) leading to glucose metabolic flow into the pentose phosphate pathways and HBP, which regulate the metabolic reprogramming of endometrial cells. Furthermore, O-GlcNAcylation mediated the intracellular transport of glycerol to support and compensate for glycolysis through regulation of AQP3. Unexpectedly, elevated AQP3 also increased glucose uptake via GLUT1. These processes maintained higher metabolic requirements for endometrial physiology. Furthermore, the transcription factor SP1 specifically bound to the AQP3 promoter region, and O-GlcNAcylation of SP1 increased its stability and transcriptional regulation of AQP3 which is associated with O-GlcNAcylation of SP1. Conclusion: Overall, O-GlcNAcylation regulated glucose metabolism in endometrial cells, and AQP3-mediated compensation provides new insights into the communication between glycolysis and O-GlcNAcylation.


Assuntos
Aquaporina 3 , Glicólise , Animais , Aquaporina 3/metabolismo , Implantação do Embrião , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Hexosaminas , Camundongos
15.
J Manipulative Physiol Ther ; 32(7): 506-14, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19748401

RESUMO

OBJECTIVE: This study investigated if central sensitization is induced in the trigeminal subnucleus caudalis (also termed the medullary dorsal horn) and C1 and C2 dorsal horns by noxious stimulation of deep upper cervical paraspinal tissues in a preparation relatively free of surgical trauma. METHODS: Adult male Sprague-Dawley rats (275-450 g) were anesthetized intraperitoneally. Animals were then placed in a stereotaxic frame; a small cutaneous incision was made 3 to 4 mm near the bregma in the midline, and an opening into the skull was prepared by a 1/32-inch drill, 1 mm to the left from the midline. An epoxylite-coated tungsten microelectrode was introduced at an 18 degrees angle to enter this small opening on the skull and was then carefully advanced about 16 mm through cortex, cerebellum, and brainstem to reach subsequently histologically confirmed sites in the Vc and upper cervical (C1 and C2) dorsal horn region. Thirty-three, 27, and 15 neurons recorded in medullary, C1, and C2 dorsal horns, respectively, of chloralose/urethane-anesthetized rats were activated by noxious stimulation of mechanoreceptive fields involving V1, V2, and/or V3 trigeminal nerve territories. The inflammatory irritant mustard oil was injected into the deep paraspinal tissues at the level of the left C1-C2 joint. Pre and postinjection receptive field (RF) sizes were mapped by nonnoxious mechanical stimuli and noxious mechanical and heat stimuli. RESULTS: A 30- to 50-minute increase (mean, 165% +/- 38.1%) in RF size postinjection for 62% of neurons tested was demonstrated, suggesting central sensitization; for most (>70%) neurons, the RF expanded caudally into cervically innervated tissues. CONCLUSIONS: These findings provide the first documentation that deep cervical nociceptive inputs can induce central sensitization in medullary and C1/C2 dorsal horns and suggest that these effects may reflect mechanisms contributing to deep cervical pain and its referral.


Assuntos
Músculo Esquelético/inervação , Limiar da Dor/fisiologia , Dor/fisiopatologia , Estimulação Física , Células do Corno Posterior/fisiologia , Núcleo Inferior Caudal do Nervo Trigêmeo/fisiologia , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Eletrodos Implantados , Cirurgia Geral , Masculino , Músculo Esquelético/fisiologia , Compostos de Mostarda/farmacologia , Vias Neurais , Neurônios Aferentes/fisiologia , Medição da Dor , Células do Corno Posterior/efeitos dos fármacos , Probabilidade , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade , Coluna Vertebral , Estatísticas não Paramétricas , Núcleo Inferior Caudal do Nervo Trigêmeo/efeitos dos fármacos
16.
Blood Transfus ; 15(6): 535-542, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28488967

RESUMO

Transfusion of stored blood is regarded as one of the great advances in modern medicine. However, during storage in the blood bank, red blood cells (RBCs) undergo a series of biochemical and biomechanical changes that affect cell morphology and physiology and potentially impair transfusion safety and efficacy. Despite reassuring evidence from clinical trials, it is universally accepted that the storage lesion(s) results in the altered physiology of long-stored RBCs and helps explain the rapid clearance of up to one-fourth of long-stored RBCs from the recipient's bloodstream at 24 hours after administration. These considerations explain the importance of understanding and mitigating the storage lesion. With the emergence of new technologies that have enabled large-scale and in-depth screening of the RBC metabolome and proteome, recent studies have provided novel insights into the molecule-level metabolic changes underpinning the accumulation of storage lesions to RBCs in the blood bank and alternative storage strategies to mitigate such lesion(s). These approaches borrow from recent insights on the biochemistry of RBC adaptation to high altitude hypoxia. We recently conducted investigations in genetically modified mice and revealed novel insights into the role of adenosine signalling in response to hypoxia as a previously unrecognised cascade regulating RBC glucose metabolism and increasing O2 release, while decreasing inflammation and tissue injuries in animal models. Here, we will discuss the molecular mechanisms underlying the role of purinergic molecules, including adenosine and adenosine triphosphate in manipulating RBCs and blood vessels in response to hypoxia. We will also speculate about new therapeutic possibilities to improve the quality of stored RBCs and the prognosis after transfusion.


Assuntos
Adenosina/metabolismo , Preservação de Sangue/métodos , Eritrócitos/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Animais , Transfusão de Eritrócitos , Eritrócitos/citologia , Glucose/metabolismo , Humanos , Metaboloma , Metabolômica/métodos , Oxigênio/metabolismo , Receptores Purinérgicos P1/metabolismo
17.
United European Gastroenterol J ; 5(1): 94-103, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28405327

RESUMO

BACKGROUND: Early detection of liver fibrosis in thalassemia patients and rapid initiation of treatment to interfere with its progression are extremely important. OBJECTIVE: This study aimed to find a sensitive, easy-to-detect and noninvasive method other than liver biopsy for early detection of liver fibrosis in thalassemia patients. METHODS: A total of 244 Chinese Thalassemia patients with non-transfusion-dependent thalassemia (NTDT, n = 105) or thalassemia major (TM, n = 139) and 120 healthy individuals were recruited into the present study, and blood collagen type IV (C IV), precollagen type III (PIIINPC) and hyaluronic acid (HA), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and ferritin were measured. Liver iron concentration was determined by MRI. The correlation of serum markers with liver iron load and liver function was evaluated. RESULTS: Serum C IV, PIIINPC and HA were significantly elevated in Chinese patients with NTDT and further elevated in TM patients. Moreover, C IV, PIIINPC and HA were also positively correlated to serum ferritin and liver iron concentration and further elevated during the progression to multi-organ damage in NTDT patients. Finally, serum ferritin and liver iron concentration were significantly correlated with liver dysfunction determined by AST and ALT. CONCLUSION: Taken together, our results indicate that monitoring serum C IV, PIIINPC and HA is a potentially sensitive method to predict the risks for iron overload-related liver fibrosis in Chinese thalassemia patients.

18.
Front Med (Lausanne) ; 4: 175, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29090212

RESUMO

State-of-the-art proteomics technologies have recently helped to elucidate the unanticipated complexity of red blood cell metabolism. One recent example is citrate metabolism, which is catalyzed by cytosolic isoforms of Krebs cycle enzymes that are present and active in mature erythrocytes and was determined using quantitative metabolic flux analysis. In previous studies, we reported significant increases in glycolytic fluxes in red blood cells exposed to hypoxia in vitro or in vivo, an observation relevant to transfusion medicine owing to the potential benefits associated with hypoxic storage of packed red blood cells. Here, using a combination of steady state and quantitative tracing metabolomics experiments with 13C1,2,3-glucose, 13C6-citrate, 13C515N2-glutamine, and 13C1-aspartate via ultra-high performance liquid chromatography coupled on line with mass spectrometry, we observed that hypoxia in vivo and in vitro promotes consumption of citrate and other carboxylates. These metabolic reactions are theoretically explained by the activity of cytosolic malate dehydrogenase 1 and isocitrate dehydrogenase 1 (abundantly represented in the red blood cell proteome), though moonlighting functions of additional enzymes cannot be ruled out. These observations enhance understanding of red blood cell metabolic responses to hypoxia, which could be relevant to understand systemic physiological and pathological responses to high altitude, ischemia, hemorrhage, sepsis, pulmonary hypertension, or hemoglobinopathies. Results from this study will also inform the design and testing of novel additive solutions that optimize red blood cell storage under oxygen-controlled conditions.

19.
Hypertension ; 70(1): 209-218, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28507174

RESUMO

Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia.


Assuntos
Adenosina Desaminase , Placenta , Pré-Eclâmpsia , Adenosina Desaminase/metabolismo , Adenosina Desaminase/farmacologia , Animais , Autoanticorpos/metabolismo , Células Cultivadas , Metilação de DNA , Modelos Animais de Doenças , Terapia de Reposição de Enzimas/métodos , Epigenômica , Feminino , Humanos , Camundongos , Placenta/efeitos dos fármacos , Placenta/metabolismo , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/metabolismo , Gravidez , Resultado do Tratamento , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo
20.
J Appl Physiol (1985) ; 123(4): 951-956, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572494

RESUMO

Erythrocytes are vital to human adaptation under hypoxic conditions because of their abundance in number and irreplaceable function of delivering oxygen (O2). However, although multiple large-scale altitude studies investigating the overall coordination of the human body for hypoxia adaptation have been conducted, detailed research with a focus on erythrocytes was missing due to lack of proper techniques. The recently maturing metabolomics profiling technology appears to be the answer to this limitation. Metabolomics profiling provides unbiased high-throughput screening data that reveal the overall metabolic status of erythrocytes. Recent studies have exploited this new technology and provided novel insight into erythrocyte physiology and pathology. In particular, a series of studies focusing on erythrocyte purinergic signaling have reported that adenosine signaling, coupled with 5' AMP-activated protein kinase (AMPK) and the production of erythrocyte-enriched bioactive signaling lipid sphingosine 1-phosphate, regulate erythrocyte glucose metabolism for more O2 delivery. Moreover, an adenosine-dependent "erythrocyte hypoxic memory" was discovered that provides an explanation for fast acclimation upon re-ascent. These findings not only shed new light on our understanding of erythrocyte function and hypoxia adaptation, but also offer a myriad of novel therapeutic possibilities to counteract various hypoxic conditions.


Assuntos
Adaptação Fisiológica/fisiologia , Adenosina/metabolismo , Eritrócitos/metabolismo , Hipóxia/metabolismo , Transdução de Sinais/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Aclimatação , Animais , Humanos , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA