Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 592(7854): 433-437, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33790463

RESUMO

Upon gamete fusion, animal egg cells secrete proteases from cortical granules to establish a fertilization envelope as a block to polyspermy1-4. Fertilization in flowering plants is more complex and involves the delivery of two non-motile sperm cells by pollen tubes5,6. Simultaneous penetration of ovules by multiple pollen tubes (polytubey) is usually avoided, thus indirectly preventing polyspermy7,8. How plant egg cells regulate the rejection of extra tubes after successful fertilization is not known. Here we report that the aspartic endopeptidases ECS1 and ECS2 are secreted to the extracellular space from a cortical network located at the apical domain of the Arabidopsis egg cell. This reaction is triggered only after successful fertilization. ECS1 and ECS2 are exclusively expressed in the egg cell and transcripts are degraded immediately after gamete fusion. ECS1 and ESC2 specifically cleave the pollen tube attractor LURE1. As a consequence, polytubey is frequent in ecs1 ecs2 double mutants. Ectopic secretion of these endopeptidases from synergid cells led to a decrease in the levels of LURE1 and reduced the rate of pollen tube attraction. Together, these findings demonstrate that plant egg cells sense successful fertilization and elucidate a mechanism as to how a relatively fast post-fertilization block to polytubey is established by fertilization-induced degradation of attraction factors.


Assuntos
Arabidopsis/metabolismo , Endopeptidases/metabolismo , Fertilização , Óvulo Vegetal/metabolismo , Tubo Polínico/metabolismo , Pólen/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Fusão Celular , Óvulo Vegetal/enzimologia , Pólen/enzimologia
2.
Plant Physiol ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905146

RESUMO

Body axis establishment is one of the earliest patterning events in plant embryogenesis. Asymmetric zygote division is critical for apical-basal axis formation in Arabidopsis (Arabidopsis thaliana). However, how the orientation of the cell division plane is regulated and its relation to apical-basal axis establishment and proper position of embryos in grasses remain poorly understood. By characterizing mutants of 3 rice (Oryza sativa) WUSCHEL HOMEOBOX9 (WOX9) genes, whose paralogs in Arabidopsis play essential roles in zygotic asymmetric cell division and cell fate determination, we found 2 kinds of independent embryonic defects: topsy-turvy embryos, in which apical-basal axis twists from being parallel to the longitudinal axis of the seed to being perpendicular; and organ-less embryos. In contrast to their Arabidopsis orthologs, OsWOX9s displayed dynamic distribution during embryo development. Both DWT1/OsWOX9A and DWL2/WOX9C play major roles in the apical-basal axis formation and initiation of stem cells. In addition, DWT1 has a distinct function in regulating the first few embryonic cell divisions to ensure the correct orientation of the embryo in the ovary. In summary, DWT1 acts in 2 steps during rice embryo pattern formation: the initial zygotic division, and with DWL2 to establish the main body axes and stem cell fate 2 to 3 d after pollination.

3.
Plant Cell ; 34(8): 2989-3005, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35543471

RESUMO

During angiosperm male gametogenesis, microspores divide to produce a vegetative cell (VC) and a male germline (MG), each with distinct cell fates. The mechanism underlying determination of the MG cell/VC fate remains an important area of research, with many unanswered questions. Here, we report that H3K27me3 is essential for VC fate commitment in male Arabidopsis thaliana gametophytes; H3K27me3 erasure contributes to MG cell fate initiation. VC-targeted H3K27me3 erasure disturbed VC development and shifted the VC fate toward a gamete destination, which suggests that MG cells require H3K27me3 erasure to trigger gamete cell fate. Multi-omics and cytological analyses confirmed the occurrence of extensive cell identity transition due to H3K27me3 erasure. Therefore, we experimentally confirmed that MG cell/VC fate is epigenetically regulated. H3K27 methylation plays a critical role in guiding MG cell/VC fate determination for pollen fertility in Arabidopsis. Our work also provides evidence for two previous hypotheses: the germline cell fate is specified by the differential distribution of unknown determinants and VC maintains the default microspore program (i.e. the H3K27me3 setting) while MG requires reprogramming.


Assuntos
Arabidopsis , Histonas , Arabidopsis/metabolismo , Linhagem da Célula , Histonas/genética , Histonas/metabolismo , Metilação , Pólen/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(45): e2207608119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322734

RESUMO

Sexual reproduction involves the fusion of two gametes of opposite sex. Although the sperm-expressed fusogen HAPLESS 2 (HAP2) or GENERATIVE CELL SPECIFIC 1 (GCS1) plays a vital role in this process in many eukaryotic organisms and an understanding of its regulation is emerging in unicellular systems [J. Zhang et al., Nat. Commun. 12, 4380 (2021); J. F. Pinello et al. Dev. Cell 56, 3380-3392.e9 (2021)], neither HAP2/GCS1 interactors nor mechanisms for delivery and activation at the fusion site are known in multicellular plants. Here, we show that Arabidopsis thaliana HAP2/GCS1 interacts with two sperm DUF679 membrane proteins (DMP8 and DMP9), which are required for the EGG CELL 1 (EC1)-induced translocation of HAP2/GCS1 from internal storage vesicle to the sperm plasma membrane to ensure successful fertilization. Our studies in Arabidopsis and tobacco provide evidence for a conserved function of DMP8/9-like proteins as HAP2/GCS1 partner in seed plants. Our data suggest that seed plants evolved a DMP8/9-dependent fusogen translocation process to achieve timely acquisition of sperm fusion competence in response to egg cell-derived signals, revealing a previously unknown critical step for successful fertilization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Sementes/metabolismo , Arabidopsis/metabolismo , Espermatozoides/metabolismo , Fertilização/fisiologia
5.
Plant Cell ; 33(4): 1151-1160, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33793916

RESUMO

The seeds of flowering plants contain three genetically distinct structures: the embryo, endosperm, and seed coat. The embryo and endosperm need to interact and exchange signals to ensure coordinated growth. Accumulating evidence has confirmed that embryo growth is supported by the nourishing endosperm and regulated by signals originating from the endosperm. Available data also support that endosperm development requires communication with the embryo. Here, using single-fertilization mutants, Arabidopsis thaliana dmp8 dmp9 and gex2, we demonstrate that in the absence of a zygote and embryo, endosperm initiation, syncytium formation, free nuclear cellularization, and endosperm degeneration occur as in the wild type in terms of the cytological process and time course. Although rapid embryo expansion accelerates endosperm breakdown, our findings strongly suggest that endosperm development is an autonomously organized process, independent of egg cell fertilization and embryo-endosperm communication. This work confirms both the altruistic and self-directed nature of the endosperm during coordinated embryo-endosperm development. Our findings provide insights into the intricate interaction between the two fertilization products and will help to distinguish the physiological roles of the signaling between endosperm and embryo. These findings also open new avenues in agro-biotechnology for crop improvement.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Endosperma/crescimento & desenvolvimento , Sementes/citologia , Sementes/crescimento & desenvolvimento , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endosperma/citologia , Endosperma/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Membrana/genética , Células Vegetais , Plantas Geneticamente Modificadas , Sementes/genética , Zigoto/crescimento & desenvolvimento
6.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33597298

RESUMO

Plant fertilization involves both an egg cell, which fuses with a sperm cell, and synergid cells, which guide pollen tubes for sperm cell delivery. Therefore, egg and synergid cell functional specifications are prerequisites for successful fertilization. However, how the egg and synergid cells, referred to as the "egg apparatus," derived from one mother cell develop into distinct cell types remains an unanswered question. In this report, we show that the final position of the nuclei in female gametophyte determines the cell fate of the egg apparatus. We established a live imaging system to visualize the dynamics of nuclear positioning and cell identity establishment in the female gametophyte. We observed that free nuclei should migrate to a specific position before egg apparatus specialization. Artificial changing in the nuclear position on disturbance of the actin cytoskeleton, either in vitro or in vivo, could reset the cell fate of the egg apparatus. We also found that nuclei of the same origin moved to different positions and then showed different cell identities, whereas nuclei of different origins moved to the same position showed the same cell identity, indicating that the final positions of the nuclei, rather than specific nucleus lineage, play critical roles in the egg apparatus specification. Furthermore, the active auxin level was higher in the egg cell than in synergid cells. Auxin transport inhibitor could decrease the auxin level in egg cells and impair egg cell identity, suggesting that directional and accurate auxin distribution likely acts as a positional cue for egg apparatus specialization.


Assuntos
Arabidopsis/citologia , Óvulo Vegetal/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Diferenciação Celular , Núcleo Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Células Vegetais/fisiologia , Plantas Geneticamente Modificadas/citologia
7.
New Phytol ; 238(1): 155-168, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36527238

RESUMO

In angiosperm, two immotile sperm cells are delivered to the female gametes for fertilization by a pollen tube, which perceives guidance cues from ovules at least at two critical sites, micropyle for short-distance guidance and funiculus for comparably longer distance guidance. Compared with the great progress in understanding pollen tube micropylar guidance, little is known about the signaling for funicular guidance. Here, we show that funiculus plays an important role in pollen tube guidance and report that female gametophyte (FG) plays a critical role in funicular guidance by analysis of a 3-dehydroquinate synthase (DHQS) mutant. Loss function of DHQS in FG interrupts pollen tube funicular guidance, suggesting that the guiding signal is generated from FG. We show the evidence that the capacity of funicular guidance is established during FG functional specification after the establishment of cell identity. Specific expression of DHQS in the synergid cells, central cells, or egg cells can rescue funicular guidance defect in dhqs/+, indicating all the female germ unit cells are involved in the funicular guidance. The finding reveals that the attracting signal of pollen tube funicular guidance was generated at a site and stage manner and provides novel clue to locate and search for the signal.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tubo Polínico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Óvulo Vegetal/metabolismo , Tubo Polínico/metabolismo , Polinização/fisiologia , Sementes/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(51): 32757-32763, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288691

RESUMO

After eukaryotic fertilization, gamete nuclei migrate to fuse parental genomes in order to initiate development of the next generation. In most animals, microtubules control female and male pronuclear migration in the zygote. Flowering plants, on the other hand, have evolved actin filament (F-actin)-based sperm nuclear migration systems for karyogamy. Flowering plants have also evolved a unique double-fertilization process: two female gametophytic cells, the egg and central cells, are each fertilized by a sperm cell. The molecular and cellular mechanisms of how flowering plants utilize and control F-actin for double-fertilization events are largely unknown. Using confocal microscopy live-cell imaging with a combination of pharmacological and genetic approaches, we identified factors involved in F-actin dynamics and sperm nuclear migration in Arabidopsis thaliana (Arabidopsis) and Nicotiana tabacum (tobacco). We demonstrate that the F-actin regulator, SCAR2, but not the ARP2/3 protein complex, controls the coordinated active F-actin movement. These results imply that an ARP2/3-independent WAVE/SCAR-signaling pathway regulates F-actin dynamics in female gametophytic cells for fertilization. We also identify that the class XI myosin XI-G controls active F-actin movement in the Arabidopsis central cell. XI-G is not a simple transporter, moving cargos along F-actin, but can generate forces that control the dynamic movement of F-actin for fertilization. Our results provide insights into the mechanisms that control gamete nuclear migration and reveal regulatory pathways for dynamic F-actin movement in flowering plants.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Miosinas/metabolismo , Nicotiana/metabolismo , Actinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Magnoliopsida/metabolismo , Miosinas/genética , Óvulo Vegetal/metabolismo , Plantas Geneticamente Modificadas , Pólen/metabolismo
9.
Circulation ; 143(18): 1775-1792, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33660517

RESUMO

BACKGROUND: The mevalonate pathway generates endogenous cholesterol and intermediates including geranylgeranyl pyrophosphate (GGPP). By reducing GGPP production, statins exert pleiotropic or cholesterol-independent effects. The potential regulation of GGPP homeostasis through dietary intake and the interaction with concomitant statin therapy is unknown. METHODS: We developed a sensitive high-pressure liquid chromatography technique to quantify dietary GGPP and conducted proteomics, qualitative real-time polymerase chain reaction screening, and Western blot to determine signaling cascades, gene expression, protein-protein interaction, and protein membrane trafficking in wild-type and transgenic rats. RESULTS: GGPP contents were highly variable depending on food source that differentially regulated blood GGPP levels in rats. Diets containing intermediate and high GGPP reduced or abolished the effects of statins in rats with hypoxia- and monocrotaline-induced pulmonary hypertension: this was rescuable by methyl-allylthiosulfinate and methyl-allylthiosulfinate-rich garlic extracts. In human pulmonary artery smooth muscle cells treated with statins, hypoxia activated RhoA in an extracellular GGPP-dependent manner. Hypoxia-induced ROCK2 (Rho associated coiled-coil containing protein kinase 2)/Rab10 (Ras-related protein rab-10) signaling was prevented by statin and recovered by exogenous GGPP. The hypoxia-activated RhoA/ROCK2 pathway in rat and human pulmonary artery smooth muscle cells upregulated the expression of Ca2+-sensing receptor (CaSR) and HIMF (hypoxia-induced mitogenic factor), a mechanism attenuated by statin treatment and regained with exogenous GGPP. Rab10 knockdown almost abrogated hypoxia-promoted CaSR membrane trafficking, a process diminished by statin and resumed by exogenous GGPP. Hypoxia-induced pulmonary hypertension was reduced in rats with CaSR mutated at the binding motif of HIMF and the interaction between dietary GGPP and statin efficiency was abolished. In humans fed a high GGPP diet, blood GGPP levels were increased. This abolished statin-lowering effects on plasma GGPP, and also on hypoxia-enhanced RhoA activity of blood monocytes that was rescued by garlic extracts. CONCLUSIONS: There is important dietary regulation of GGPP levels that interferes with the effects of statin therapy in experimental pulmonary hypertension. These observations rely on a key and central role of RhoA-ROCK2 cascade activation and Rab10-faciliated CaSR membrane trafficking with subsequent overexpression and binding of HIMF to CaSR. These findings warrant clinical investigation for the treatment of pulmonary hypertension and perhaps other diseases by combining statin with garlic-derived methyl-allylthiosulfinate or garlic extracts and thus circumventing dietary GGPP variations.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Fosfatos de Poli-Isoprenil/efeitos adversos , Animais , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Masculino , Ratos
10.
J Integr Plant Biol ; 64(2): 215-229, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34473416

RESUMO

The evolution of seeds is a major reason why flowering plants are a dominant life form on Earth. The developing seed is composed of two fertilization products, the embryo and endosperm, which are surrounded by a maternally derived seed coat. Accumulating evidence indicates that efficient communication among all three seed components is required to ensure coordinated seed development. Cell communication within plant seeds has drawn much attention in recent years. In this study, we review current knowledge of cross-talk among the endosperm, embryo, and seed coat during seed development, and highlight recent advances in this field.


Assuntos
Magnoliopsida , Comunicação Celular , Endosperma , Sementes
11.
New Phytol ; 229(4): 2152-2162, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33098089

RESUMO

Vegetable oil is a major edible oil and an important industrial raw material. However, breeders have found it challenging to improve the oil content of crop seeds, and little is known about regulators with the potential to increase oil content via molecular engineering in modern oil crop breeding. We reported an F-box protein, Arabidopsis thaliana MYB Interaction Factor 1 (AtMIF1), which is a member of the ubiquitin-protein ligase E3 complex involved in the 26S proteasome protein degradation pathway. AtMIF1 physically interacts with MYB domain protein 5 (MYB5), which results in MYB5 degradation, so that transcriptional activation of the MYB/bHLH/WD-repeat (MBW) complex does not occur normally and GLABRA2 (GL2), encoding an inhibitor of oil content and functioning as a direct downstream gene of MBW, is not properly transcribed. AtMIF1 functioned as a positive regulator that increases oil content by attenuating GL2 inhibition. We overexpressed AtMIF1 and obtained transgenic plants with significantly higher seed oil contents. Importantly, both vegetative and reproductive growth of the transgenic plants appeared normal. In summary, this work reveals a novel regulator, AtMIF1, and a new regulatory pathway, 26S proteasome-AtMIF1-MYB5, for increasing the oil content of seeds without affecting plant growth, thus facilitating oil crop breeding.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Melhoramento Vegetal , Óleos de Plantas , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo
12.
J Exp Bot ; 72(22): 7658-7667, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34338297

RESUMO

Autophagy is a mechanism by which damaged or unwanted cells are degraded and their constituents recycled. Over the past decades, research focused on autophagy has expanded from yeast to mammals and plants, and the core machinery regulating autophagy appears to be conserved. In plants, autophagy has essential roles in responses to stressful conditions and also contributes to normal development, especially in the context of reproduction. Here, based on recent efforts to understand the roles and molecular mechanisms underlying autophagy, we highlight the specific roles of autophagy in plant reproduction and provide new insights for further studies.


Assuntos
Autofagia , Fenômenos Fisiológicos Vegetais , Plantas , Reprodução
13.
J Exp Bot ; 71(14): 4083-4092, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32280991

RESUMO

The maturation of male and female gametophytes together with its impact on plant sexual reproduction has not received much attention, and the molecular mechanisms underlying the process are largely unknown. Here, we show that Arabidopsis DEAD-box RNA helicase 29 (RH29) is critical for the functional maturation of both male and female gametophytes. Homozygous rh29 mutants could not be obtained, and heterozygous mutant plants were semi-sterile. Progression of the cell cycle in rh29 female gametophytes was delayed. Delayed pollination experiments showed that rh29 female gametophytes underwent cell-fate specification but were unable to develop into functional gametophytes. Functional specification but not morphogenesis was also disrupted in rh29 male gametophytes, causing defective pollen tube growth in the pistil. RH29 was highly and specifically expressed in gametophytic cells. RH29 shares high amino acid sequence identity with yeast Dbp10p, which partially rescues the aborted-ovules phenotype of rh29/RH29 plants. RH29 is essential for the synthesis of REGULATORY PARTICLE TRIPLE A ATPase 5a (RPT5a), a subunit of the regulatory particle of the 26S proteasome. Our results suggest that gametophyte functional maturation is a necessary process for successful fertilization and that RH29 is essential for the functional maturation of both male and female gametophytes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , RNA Helicases DEAD-box/genética , Células Germinativas Vegetais , Mutação , Óvulo Vegetal/genética
14.
PLoS Genet ; 13(1): e1006553, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28095407

RESUMO

Imprinted genes display biased expression of paternal and maternal alleles and are only found in mammals and flowering plants. Compared to several hundred imprinted genes that are functionally characterized in mammals, very few imprinted genes were confirmed in plants and even fewer of them have been functionally investigated. Here, we report a new imprinted gene, NUWA, in plants. NUWA is an essential gene, because loss of its function resulted in reduced transmission through the female gametophyte and defective cell/nuclear proliferation in early Arabidopsis embryo and endosperm. NUWA is a maternally expressed imprinted gene, as only the maternal allele of NUWA is transcribed and translated from gametogenesis to the 16-cell globular embryo stage after fertilization, and the de novo transcription of the maternal allele of NUWA starts from the zygote stage. Different from other identified plant imprinted genes whose encoded proteins are mostly localized to the nucleus, the NUWA protein was localized to the mitochondria and was essential for mitochondria function. Our work uncovers a novel imprinted gene of a previously unidentified type, namely, a maternal-specific expressed nuclear gene with its encoded protein localizing to and controlling the function of the maternally inherited mitochondria. This reveals a unique mechanism of maternal control of the mitochondria and adds an extra layer of complexity to the regulation of nucleus-organelle coordination during early plant development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Impressão Genômica , Proteínas Mitocondriais/genética , Arabidopsis/crescimento & desenvolvimento , Mitocôndrias/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento
15.
Anal Chem ; 91(5): 3492-3499, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30715858

RESUMO

Phytohormones play crucial roles in every aspect of plant life, and their regulatory functions rely on complex crosstalk networks among the different classes of phytohormones in an antagonistic or synergistic manner. Therefore, the simultaneous determination of multiclass phytohormones is important for studies of phytohormone functions and networks. However, due to the heterogeneity of the sensitivity resulting from structural diversity and the low content in the plant samples, simultaneous determination of multiclass phytohormones is challenging, especially in very tiny plant tissues or organs. Here, we describe a novel method for the simultaneous determination of 31 phytohormones from different classes in a single run. This uses a one-pot multifunctional derivatization coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS). N, N-Diethyl ethylenediamine (DEED) and 2-methyl-4-phenylaminomethyl-benzeneboronic acid (2-methy-4-PAMBA) were used for derivatization of carboxylated phytohormones and brassinosteroids (BRs), respectively, to simultaneously improve detection sensitivities of carboxylated phytohormones and BRs. The method was fully validated for the 31 targeted phytohormones and could quantify multiclass endogenous phytohormones in small amounts of fresh plant samples (0.02-5 mg, FW). Finally, we used this method to investigate the spatial-temporal distribution of multiple phytohormones in reproductive organs of a single flower of Arabidopsis thaliana for the first time. This method could be a powerful auxiliary tool for studies of phytohormone functions and regulatory networks.


Assuntos
Arabidopsis/química , Brassinosteroides/análise , Reguladores de Crescimento de Plantas/análise , Cromatografia Líquida , Flores/química , Estrutura Molecular , Espectrometria de Massas em Tandem
16.
J Integr Plant Biol ; 61(5): 598-610, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30589207

RESUMO

Programmed cell death (PCD) is an essential process for development, and shows conserved cytological features in both plants and animals. Caspases are well-known critical components of the PCD machinery in animals. However, currently few typical counterparts have been identified in plants and only several caspase-like proteases are known to be involved in plant PCD, indicating the existence of great challenge for confirming new caspase-like proteases and elucidating the mechanisms regulating plant PCD. Here, we report a novel cysteine protease, NtTPE8, which was extracted from tobacco seeds and confirmed as a new caspase-like protease. Recombinant NtTPE8 exhibited legumain and caspase-like proteolytic activities, both of which could be inhibited by the pan-caspase inhibitor (Z-VAD-FMK). Notably, NtTPE8 possessed several caspase activities and the capacity to cleave the cathepsin H substrate FVR, indicating a unique character of NtTPE8. NtTPE8 was exclusively expressed in the integumentary tapetum and thus, is the first specific molecular marker reported to date for this cell type. Down-regulation of NtTPE8 caused seed abortion, via disturbing early embryogenesis, indicating its critical role in embryogenesis and seed development. In conclusion, we identified a novel caspase-like cysteine protease, NtTPE8, exclusively expressed in the integumentary tapetum that is involved in seed development.


Assuntos
Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Caspases/genética , Caspases/metabolismo , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Nicotiana/crescimento & desenvolvimento , Nicotiana/fisiologia
17.
Plant J ; 91(6): 1051-1063, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28671744

RESUMO

In angiosperms, the first zygotic division usually gives rise to two daughter cells with distinct morphologies and developmental fates, which is critical for embryo pattern formation; however, it is still unclear when and how these distinct cell fates are specified, and whether the cell specification is related to cytoplasmic localization or polarity. Here, we demonstrated that when isolated from both maternal tissues and the apical cell, a single basal cell could only develop into a typical suspensor, but never into an embryo in vitro. Morphological, cytological and gene expression analyses confirmed that the resulting suspensor in vitro is highly similar to its undisturbed in vivo counterpart. We also demonstrated that the isolated apical cell could develop into a small globular embryo, both in vivo and in vitro, after artificial dysfunction of the basal cell; however, these growing apical cell lineages could never generate a new suspensor. These findings suggest that the initial round of cell fate specification occurs at the two-celled proembryo stage, and that the basal cell lineage is autonomously specified towards the suspensor, implying a polar distribution of cytoplasmic contents in the zygote. The cell fate transition of the basal cell lineage to the embryo in vivo is actually a conditional cell specification process, depending on the developmental signals from both the apical cell lineage and maternal tissues connected to the basal cell lineage.


Assuntos
Padronização Corporal , Magnoliopsida/embriologia , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Magnoliopsida/citologia , Magnoliopsida/genética , Sementes/citologia , Sementes/embriologia , Sementes/genética , Nicotiana/citologia , Nicotiana/embriologia , Nicotiana/genética , Zigoto
18.
BMC Plant Biol ; 18(1): 87, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764367

RESUMO

BACKGROUND: Papain-like and legumain-like proteases are proteolytic enzymes which play key roles in plant development, senescence and defense. The activities of proteases in both families could be inhibited by a group of small proteins called cystatin. Cystatin family genes have been well characterized both in tobacco and rice, suggesting their potential roles in seed development. However, their potential targets, papain-like and legumain-like proteases, have not been well characterized in plants, especially in rice, a model plant for cereal biology. RESULTS: Here, 33 papain-like and 5 legumain-like proteases have been identified in rice genome, respectively. Gene structure, distribution in rice chromosome, and evolutionary relationship to their counterparts in other plants have been well characterized. Comprehensive expression profile analysis revealed that two family genes display divergent expression pattern, which are regulated temporally and spatially during the process of seed development and germination. Our experiments also revealed that the expression of most genes in these two families is sensitively responsive to plant hormones and different abiotic stresses. CONCLUSIONS: Genome-wide identification and comprehensive gene expression pattern analysis of papain-like and legumain-like proteases in rice suggests their multiple and cooperative roles in seed development and response to environmental variations, which provides several useful cues for further in-depth study.


Assuntos
Cisteína Endopeptidases/genética , Genes de Plantas/genética , Oryza/enzimologia , Papaína/genética , Peptídeo Hidrolases/genética , Proteínas de Plantas/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cisteína Endopeptidases/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Oryza/genética , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
19.
New Phytol ; 218(2): 463-469, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29424430

RESUMO

During male gametogenesis in cereals, the generative cell undergoes a positioning process that parallels the dynamics of the central vacuole, which is believed to be associated with generative cell movement in the male gametophyte. However, the impact of the generative cell positioning and the central vacuole dynamics on male gametogenesis has remained poorly understood. Here, we report that OsGCD1 (GAMETE CELLS DEFECTIVE1) dysfunction influenced pollen development and disrupted pollen germination. Loss of function of OsGCD1 altered the central vacuole dynamics and the generative cell was mispositioned. Nevertheless, twin sperm cells were generated normally, indicating that gametogenesis does not rely on positional information as long as a generative cell is produced. The normal vacuole dynamics seems necessary only for pollen maturation and germination. Our findings also indicate that osgcd1 mutation resulted in rice male sterility in which pollen has full cell viability and generated normal gametes, but lacks the potential to germinate.


Assuntos
Gametogênese/fisiologia , Oryza/fisiologia , Pólen/fisiologia , Vacúolos/metabolismo , Germinação , Mutação/genética , Proteínas de Plantas/metabolismo
20.
Proc Natl Acad Sci U S A ; 112(40): 12432-7, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26396256

RESUMO

The suspensor is a temporary supporting structure of proembryos. It has been proposed that suspensor cells also possess embryogenic potential, which is suppressed by the embryo as an effect of the embryo-suspensor interaction. However, data to support this hypothesis are not yet available. In this report, using an in vivo living cell laser ablation technique, we show that Arabidopsis suspensor cells can develop into embryos after removing the embryo proper. The embryo proper plays a critical role in maintaining suspensor cell identity. However, this depends on the developmental stage; after the globular embryo stage, the suspensors no longer possess the potential to develop into embryos. We also reveal that hypophysis formation may be essential for embryo differentiation. Furthermore, we show that, after removing the embryo, auxin gradually accumulates in the top suspensor cell where cell division occurs to produce an embryo. Auxin redistribution likely reprograms the fate of the suspensor cell and triggers embryogenesis in suspensor cells. Thus, we provide direct evidence that the embryo suppresses the embryogenic potential of suspensor cells.


Assuntos
Arabidopsis/citologia , Arabidopsis/embriologia , Sementes/citologia , Sementes/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Divisão Celular , Células Cultivadas , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ácidos Indolacéticos/metabolismo , Microdissecção e Captura a Laser , Microscopia Confocal , Morfogênese , Plantas Geneticamente Modificadas , Sementes/genética , Fatores de Tempo , Técnicas de Cultura de Tecidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA