Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(24): 7531-7542, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37861819

RESUMO

The study examined the epidemiological characteristics of carbapenem-resistant Enterobacteriaceae (CRE) isolated from migratory birds and surroundings in Qinghai Lake, China. We identified 69 (15.7%) CRE isolates from a total of 439 samples including 29 (6.6%) blaNDM-5 Escherichia coli and 40 (9.1%) blaKPC-2 Klebsiella pneumoniae. WGS analysis indicated that ST746, ST48, ST1011, and ST167 were the primary sequence types (ST) for blaNDM-5 E. coli, while all blaKPC-2 K. pneumoniae were ST11 and harbored numerous antibiotic resistance gene types including blaCTX-M, qnrS, and rmtB. A phylogenetic tree based on core genomes revealed that blaNDM-5 E. coli was highly heterogeneous while the blaKPC-2 K. pneumoniae was highly genetically similar within the group and to human Chinese isolates. IncX3, IncHI2, and IncFIB-HI2 plasmid replicon types were associated with blaNDM-5 spread, while IncFII-R and IncFII plasmids mediated blaKPC-2 spread. We also identified IncFII-R hybrid plasmids most likely formed by IS26-mediated integration of IncFII into IncR plasmid backbones. This also facilitated the persistence of IncFII-R plasmids and antibiotic resistance genes including blaKPC-2. In addition, all of the blaKPC-2 K. pneumoniae isolates harbored a pLVKP-like virulence plasmid carrying a combination of two or more hypervirulence markers that included peg-344, iroB, iucA, rmpA, and rmpA2. This is the first description of ST11 K. pneumoniae that co-carried blaKPC-2- and pLVKP-like virulence plasmids from migratory birds. The blaKPC-2 K. pneumoniae carried by migratory birds displayed high genetic relatedness to human isolates highlighting a high risk of transmission of these K. pneumoniae. KEY POINTS: • Multidrug resistance plasmids (blaKPC-2, bla436NDM-5, bla CTX-M, qnrS, and rmtB). • Co-occurrence of plasmid-mediated resistance and virulence genes. • High similarity between migratory bird genomes and humans.


Assuntos
Enterobacteriaceae , Infecções por Klebsiella , Humanos , Enterobacteriaceae/genética , Escherichia coli/genética , beta-Lactamases/genética , Filogenia , Lagos , Klebsiella pneumoniae/genética , Plasmídeos/genética , Antibacterianos/farmacologia , Genômica , China , Infecções por Klebsiella/veterinária
2.
J Antimicrob Chemother ; 77(5): 1286-1295, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35296898

RESUMO

OBJECTIVES: To investigate the prevalence and molecular characteristics of fosA3 and fosA7 among Salmonella isolates. METHODS: Five hundred and fifty-one Salmonella isolates collected from food animals in China during 2016-19 were screened for fos genes. The drug resistance, serovars, clonal relationships and genetic environments of fosA were compared between fosA7- and fosA3-positive Salmonella. RESULTS: A relatively high prevalence of fosA7 (9.26%) and fosA3 (6.53%) was identified. fosA3 was associated with high-level fosfomycin resistance (≥512 mg/L), while fosA7 conferred relatively low-level resistance that was independent of the presence of glucose-6-phosphate. Additionally, fosA7 could facilitate Salmonella survival under oxidative stress. Both fosA3 and fosA7 were found in diverse serovars and STs, but segregated into distinct groups. The fosA3-positive Salmonella Typhimurium/Salmonella Indiana strains showed close genetic relationships, while fosA7-positive Salmonella Meleagridis/Salmonella Agona/Salmonella Derby showed a relatively high degree of whole-genome sequence heterogeneity. fosA3 was located on conjugative IncHI2 plasmids or chromosomes, while fosA7 was strictly chromosomal. Furthermore, two strains carried large chromosomal fosA7 regions within genomic islands. The fosA3 and fosA7 contigs from our isolates and the NCBI could be segregated into four primary and distinct genomic backbones. IS26 and the antibiotic resistance genes (ARGs) blaCTX-M, blaTEM-1B and rmtB were frequently adjacent to fosA3, while fosA7-carrying contigs generally lacked mobile elements and ARGs. CONCLUSIONS: fosA3 and fosA7 were the primary factors contributing to reduced fosfomycin susceptibility, to different degrees, in these Salmonella isolates. The distinct distributions and molecular characteristics of fosA7 and fosA3 indicated that their origin and evolution in Salmonella were most likely distinct.


Assuntos
Fosfomicina , Animais , Antibacterianos/farmacologia , China/epidemiologia , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Plasmídeos , Prevalência , Salmonella/genética , beta-Lactamases/genética
3.
J Antimicrob Chemother ; 77(2): 351-355, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34726693

RESUMO

OBJECTIVES: To determine the transmission and molecular characteristics of blaNDM-producing Escherichia coli between companion animals and their healthcare providers at veterinary clinics in Guangzhou, China. METHODS: A total of 359 samples from companion animals and their healthcare providers were collected at 14 veterinary clinics in Guangzhou, China. Genomic characteristics and clonal relationships for blaNDM-positive E. coli and complete plasmid sequences were characterized based on WGS data from combined Illumina and MinION platform reads. RESULTS: Forty-five blaNDM-positive bacteria were recovered from companion animals (n = 43) and their healthcare providers (n = 2) at 10 veterinary clinics. Overall, E. coli (73.3%, 33/45) and Klebsiella pneumoniae (13.3%, 6/45) were the most prevalent species among the seven species of blaNDM-positive bacteria. Four blaNDM variants (blaNDM-1, blaNDM-4, blaNDM-5 and blaNDM-7) were identified in 45 blaNDM-positive bacteria and blaNDM-5 was the most prevalent (77.8%, 35/45). WGS indicated that the most prevalent STs were ST405 (8/33), ST453 (6/33), ST457 (6/33) and ST410 (5/33) among the 33 blaNDM-positive E. coli isolates. Phylogenomics and PFGE analysis revealed that clonal spread of blaNDM-positive ST453 E. coli isolates between companion animals and their healthcare providers was evident. In addition, two novel IncFIB plasmids carrying blaNDM-4 (pF765_FIB and pG908_FIB) were found in this study and indicated that IS26 may promote the horizontal transmission of blaNDM between different plasmid types. CONCLUSIONS: In this study we conducted a large-scale investigation on the prevalence of blaNDM-positive E. coli isolates from companion animals and their healthcare providers and revealed the clonal spread of blaNDM-positive E. coli isolates between these two groups.


Assuntos
Escherichia coli , beta-Lactamases , Animais , Antibacterianos , China/epidemiologia , Escherichia coli/genética , Pessoal de Saúde , Humanos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Animais de Estimação , Plasmídeos , beta-Lactamases/genética
4.
J Antimicrob Chemother ; 77(11): 2937-2945, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35880764

RESUMO

OBJECTIVES: To reconstruct the genomic epidemiology and evolution of MDR Salmonella Indiana in China. METHODS: A total of 108 Salmonella Indiana strains were collected from humans and livestock in China. All isolates were subjected to WGS and antimicrobial susceptibility testing. Phylogenetic relationships and evolutionary analyses were conducted using WGS data from this study and the NCBI database. RESULTS: Almost all 108 Salmonella Indiana strains displayed the MDR phenotype. Importantly, 84 isolates possessed concurrent resistance to ciprofloxacin and cefotaxime. WGS analysis revealed that class 1 integrons on the chromosome and IncHI2 plasmids were the key vectors responsible for multiple antibiotic resistance gene (ARG) [including ESBL and plasmid-mediated quinolone resistance (PMQR) genes] transmission among Salmonella Indiana. The 108 Salmonella Indiana dataset displayed a relatively large core genome and ST17 was the predominant ST. Moreover, the global ST17 Salmonella Indiana strains could be divided into five distinct lineages, each of which was significantly associated with a geographical distribution. Genomic analysis revealed multiple antimicrobial resistance determinants and QRDR mutations in Chinese lineages, which almost did not occur in other global lineages. Using molecular clock analysis, we hypothesized that ST17 isolates have existed since 1956 and underwent a major population expansion from the 1980s to the 2000s and the genetic diversity started to decrease around 2011, probably due to geographical barriers, antimicrobial selective pressure and MDR, favouring the establishment of this prevalent multiple antibiotic-resistant lineage and local epidemics. CONCLUSIONS: This study revealed that adaptation to antimicrobial pressure was possibly pivotal in the recent evolutionary trajectory for the clonal spread of ST17 Salmonella Indiana in China.


Assuntos
Farmacorresistência Bacteriana Múltipla , Salmonella enterica , Humanos , Filogenia , Farmacorresistência Bacteriana Múltipla/genética , Salmonella enterica/genética , Testes de Sensibilidade Microbiana , Salmonella , Antibacterianos/farmacologia , China/epidemiologia
5.
Appl Environ Microbiol ; 88(8): e0245721, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35389252

RESUMO

We retrospectively investigated 326 samples that were collected from goose farms in Hainan Province, China, in 2017. A total of 33 carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates were identified from 326 samples, and the 33 CRKP isolates were characterized based on whole-genome sequencing (WGS) data from the Illumina and Oxford Nanopore Technologies (ONT) platforms. All of these 33 CRKP isolates possessed blaNDM-5, and a single isolate coharbored mcr-1 and blaNDM-5, while 4 isolates carried multiple virulence and metal tolerance gene clusters. One CRKP strain (CMG-35-2) was selected for long sequence reading. A hybrid plasmid carrying the virulence, resistance, and metal resistance gene in the strain was found. It possessed 2 backbones [IncFIB(K)-IncFII(K)] within a single plasmid that were closely related to K. pneumoniae plasmids from a human-associated habitat in the United States and from a human isolate in Hong Kong. A mouse abdominal infection model indicated that that strain was of the moderate virulence phenotype. This study revealed that K. pneumoniae on goose farms is an important reservoir for blaNDM-5 and these bacteria are represented by a diversity of sequence types. The heterozygous multiple drug resistance genes carried on plasmids highlighted the genetic complexity of CRKP and the urgent need for continued active surveillance. IMPORTANCE CRKP is one of the most important pathogens, which can cause infection not only in humans but also in waterfowl. The discovery of blaNDM-5-producing K. pneumoniae in waterfowl farms in recent years suggests that waterfowl are an important reservoir for blaNDM-5-producing Enterobacteriaceae. However, there are few studies on the spread of blaNDM-5-producing bacteria in waterfowl farms. Our study showed that the IncX3 plasmid carrying blaNDM-5 in goose farms is widely present in K. pneumoniae isolates and a large number of resistance genes are accumulated in it. We found a transferable IncFIB-FII hybrid plasmid that combines virulence, resistance, and metal resistance genes, which allow transfer of these traits between bacteria in different regions. The results of this study contribute to a better understanding of the prevalence and transmission of carbapenem-resistant K. pneumoniae in goose farms.


Assuntos
Antibacterianos , Klebsiella pneumoniae , Animais , Antibacterianos/farmacologia , Carbapenêmicos , Farmacorresistência Bacteriana/genética , Fazendas , Gansos , Camundongos , Estudos Retrospectivos , Virulência/genética , beta-Lactamases/genética
6.
J Antimicrob Chemother ; 76(2): 322-329, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33057710

RESUMO

OBJECTIVES: To determine the dissemination and molecular characteristics of NDM-producing Escherichia coli strains from duck farms in south-east coastal China and their threats to human health. METHODS: A total of 232 NDM-producing E. coli were recovered from 1505 samples collected from 25 duck farms and their surrounding environments in five provinces in China. Resistance genes were confirmed using PCR. Genomic characteristics of the carbapenemase-producing isolates were determined by WGS and bioinformatic analysis. RESULTS: The rate of NDM-positive E. coli detected in samples from the five provinces ranged from 3.7% to 28.5%. There was substantial variation in the prevalence of NDM-positive E. coli from different duck farms in each province studied. Three variants (blaNDM-1, blaNDM-4 and blaNDM-5) were found in 232 NDM-positive E. coli; blaNDM-5 (94.8%, 220/232) was the most prevalent. WGS analysis indicated that ST746, ST48, ST1011 and ST167 E. coli isolates were prevalent in the current study and poultry was likely the primary reservoir for NDM-positive ST746 and ST48 E. coli in China. Phylogenomic analysis showed that NDM-positive E. coli isolates from ducks were closely related to those of human origin. In addition, WGS analysis further revealed that blaNDM co-existed with other antibiotic resistance genes, conferring resistance to nine classes of antimicrobials. CONCLUSIONS: This study revealed that ducks farm in China are an important reservoir for NDM-positive E. coli and STs of the isolates showed obvious distinctive diversities in geographical distribution. The distribution and spread of NDM-positive E. coli in duck farms poses a threat to public health.


Assuntos
Patos , Escherichia coli , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias , China/epidemiologia , Escherichia coli/genética , Fazendas , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , beta-Lactamases/genética
7.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33674440

RESUMO

We investigated the prevalence and transmission of NDM-producing Enterobacteriaceae in fecal samples of geese and environmental samples from a goose farm in southern China. The samples were cultivated on MacConkey agar plates supplemented with meropenem. Individual colonies were examined for blaNDM, and blaNDM-positive bacteria were characterized based on whole-genome sequencing (WGS) data from the Illumina and Oxford Nanopore Technologies (ONT) platforms. Of 117 samples analyzed, the carriage rates for New Delhi metallo-ß-lactamase (NDM)-positive Enterobacteriaceae were 47.1, 18, and 50% in geese, inanimate environments (sewage, soil, fodder, and dust), and mouse samples, respectively. Two variants (blaNDM-1 and blaNDM-5, in 4 and 40 isolates, respectively) were found among 44 blaNDM-positive Enterobacteriaceae; these variants belonged to eight species, and Escherichia coli was the most prevalent (50%). WGS analysis revealed that blaNDM coexisted with diverse antibiotic resistance genes (ARGs). Population structure analysis showed that most E. coli and Enterobacter sp. isolates were highly heterogeneous, while most Citrobacter sp. and P. stuartii isolates possessed extremely high genetic similarities. In addition, blaNDM-5-positive ST4358/ST48 E. coli isolates were found to be clonally spread between geese and the environment and were highly genetically similar to those reported from ducks, farm environments, and humans in China. Plasmid analysis indicated that IncX3 pHNYX644-1-like (n = 40) and untypeable pM2-1-like plasmids (n = 4) mediated blaNDM spread. pM2-1-like plasmids possessed diverse ARGs, including blaNDM-1, the arsenical and mercury resistance operons, and the maltose operon. Our findings revealed that the goose farm is a reservoir for NDM-positive Enterobacteriaceae The blaNDM contamination of wild mice and the novel pM2-1-like plasmid described here likely adds to the risk for dissemination of blaNDM and associated resistance genes.IMPORTANCE Carbapenem-resistant bacteria, in particular NDM-producing Enterobacteriaceae, have become a great threat to global public. These bacteria have been found not only in hospital and community environments but also among food animal production chains, which are recognized as reservoirs for NDM-producing Enterobacteriaceae However, the dissemination of NDM-producing bacteria in waterfowl farms has been less well explored. Our study demonstrates that the horizontal spread of blaNDM-carrying plasmids and the partial clonal spread of blaNDM-positive Enterobacteriaceae contribute to the widespread contamination of blaNDM in the goose farm ecosystem, including mice. Furthermore, we found a novel and transferable blaNDM-1-carrying multidrug resistance (MDR) plasmid that possessed multiple environmental adaptation-related genes. The outcomes of this study contribute to a better understanding of the prevalence and transmission of blaNDM-carrying Enterobacteriaceae among diverse niches in the farm ecosystem.


Assuntos
Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/isolamento & purificação , Gansos/microbiologia , Doenças das Aves Domésticas/microbiologia , beta-Lactamases/genética , Animais , Antibacterianos/farmacologia , China , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/veterinária , Fazendas , Fezes/microbiologia , Fômites/microbiologia , Camundongos , Testes de Sensibilidade Microbiana
8.
Artigo em Inglês | MEDLINE | ID: mdl-32122894

RESUMO

Tigecycline serves as one of the antibiotics of last resort to treat multidrug-resistant (including carbapenem-resistant) pathogens. However, the recently emerged plasmid-mediated tigecycline resistance mechanism, Tet(X), challenges the clinical efficacy of this class of antibiotics. In this study, we detected 180 tet(X)-harboring Acinetobacter isolates (8.9%, n = 180) from 2,018 samples collected from avian farms and adjacent environments in China. Eighteen tet(X)-harboring isolates (10.0%) were found to cocarry the carbapenemase gene blaNDM-1, mostly from waterfowl samples (94.4%, 17/18). Interestingly, among six Acinetobacter strains, tet(X) and blaNDM-1 were found to colocalize on the same plasmids. Moreover, whole-genome sequencing (WGS) revealed a novel orthologue of tet(X) in the six isolates coharboring tet(X) and blaNDM-1 Inverse PCR suggested that the two tet(X) genes form a single transposable unit and may be cotransferred. Sequence comparison between six tet(X)- and blaNDM-1-coharboring plasmids showed that they shared a highly homologous plasmid backbone even though they were isolated from different Acinetobacter species (three from Acinetobacter indicus, two from Acinetobacter schindleri, and one from Acinetobacter lwoffii) from various sources and from different geological regions, suggesting the horizontal genetic transfer of a common tet(X)- and blaNDM-1-coharboring plasmid among Acinetobacter species in China. Emergence and spread of such plasmids and strains are of great clinical concern, and measures must be implemented to avoid their dissemination.


Assuntos
Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/veterinária , Acinetobacter/efeitos dos fármacos , Antibacterianos/farmacologia , Doenças das Aves/microbiologia , Aves/microbiologia , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana/genética , Resistência a Tetraciclina/genética , Tigeciclina/farmacologia , Infecções por Acinetobacter/epidemiologia , Animais , Doenças das Aves/epidemiologia , China , Transferência Genética Horizontal , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Plasmídeos , Sequenciamento Completo do Genoma
9.
Artigo em Inglês | MEDLINE | ID: mdl-31712202

RESUMO

We identified fosA3 at a rate of 2.6% in 310 Salmonella isolates from food animals in Guangdong province, China. The fosA3 gene was genetically linked to diverse antibiotic resistance genes (ARGs), including mcr-1, blaCTX-M-14/55, oqxAB, and rmtB These gene combinations were embedded in heterogeneous fosA3-containing multidrug resistance regions on the transferable ST3-IncHI2 and F33:A-:B- plasmids and the chromosome. This indicated a great flexibility of fosA3 cotransmission with multiple important ARGs among Salmonella species.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Fosfomicina/farmacologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Plasmídeos/genética , Infecções por Salmonella/epidemiologia , Salmonella typhimurium/efeitos dos fármacos
10.
J Antimicrob Chemother ; 75(7): 1756-1765, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32274508

RESUMO

OBJECTIVES: To investigate the prevalence and transmission of mcr-3 among Salmonella enterica serotype Typhimurium and 1,4,[5],12:i:-. METHODS: A total of 4724 clinical Salmonella isolates were screened for the presence of mcr-3 in China during 2014-19. The clonal relationship of the mcr-3-positive isolates and their plasmid contents and complete sequence were also characterized based on WGS data from the Illumina and MinION platforms. RESULTS: We identified 10 mcr-3-positive isolates, and all were MDR, mostly resistant to colistin, cefotaxime, ciprofloxacin, doxycycline and florfenicol. mcr-3 was co-present with blaCTX-M-55-qnrS1 on hybrid ST3-IncC-FII conjugatable plasmids (n = 6) and an ST3-IncC non-conjugatable plasmid (n = 1) and embedded into a pCHL5009T-like IncFII plasmid on the Salmonella chromosome (n = 3). Four distinctive genetic contexts surrounded mcr-3 and all but one were closely related to each other and to the corresponding region of IncFII plasmid pCHL5009T. IS15DI was most likely the vehicle for integration of mcr-3-carrying IncFII plasmids into ST3-IncC plasmids and the chromosome and for shaping the MDR regions. In addition, a phylogenetic tree based on the core genome revealed a unique Salmonella lineage (≤665 SNPs) that contained these 10 mcr-3-positive isolates and another 38 (33 from patients) mcr-3-positive Salmonella from five countries. In particular, most of the 51 mcr-3-positive isolates belonged to ST34 and harboured diverse antibiotic resistance genes (ARGs), including mcr-3-blaCTX-M-55-qnrS1, and possessed similar ARG profiles. CONCLUSIONS: Our findings revealed global clonal spread of MDR ST34 Salmonella from clinical isolates co-harbouring mcr-3 with blaCTX-M-55 and qnrS1 and a flexibility of mcr-3 co-transmittance with other ARGs mediated by mobile genetic elements.


Assuntos
Antibacterianos , Salmonella typhimurium , Antibacterianos/farmacologia , China/epidemiologia , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genética , Salmonella typhimurium/genética , Sorogrupo
11.
Artigo em Inglês | MEDLINE | ID: mdl-31481444

RESUMO

We reported the complete nucleotide sequence of a tet(X4)-carrying plasmid, pSTB20-1T, from a tigecycline-resistant Escherichia coli isolate in China. Sequence analysis indicated that pSTB20-1T contains a hybrid plasmid backbone and a tet(X4)-containing multidrug resistance region, likely originated through recombination of multiple plasmids. tet(X4) was flanked by two ISCR2, which may be responsible for tet(X4) mobilization. The occurrence and transmission of this novel hybrid plasmid may exacerbate the spread of the clinically significant tet(X4) gene.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/genética , Genes Bacterianos/genética , Plasmídeos/genética , Tigeciclina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Análise de Sequência de DNA
12.
Sci Total Environ ; 921: 170903, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354793

RESUMO

The Bacillus cereus group, as one of the important opportunistic foodborne pathogens, is considered a risk to public health due to foodborne diseases and an important cause of economic losses to food industries. This study aimed to gain essential information on the prevalence, phenotype, and genotype of B. cereus group strains isolated from various food products in China. A total of 890 strains of B. cereus group bacteria from 1181 food samples from 2020 to 2023 were identified using the standardized detection method. These strains were found to be prevalent in various food types, with the highest contamination rates observed in cereal flour (55.8 %) and wheat/rice noodles (45.7 %). The tested strains exhibited high resistance rates against penicillin (98.5 %) and ampicillin (98.9 %). Strains isolated from cereal flour had the highest rate of meropenem resistance (7.8 %), while strains from sausages were most resistant to vancomycin (16.8 %). A total of 234 out of the 891 B. cereus group strains were randomly selected for WGS analysis, 18.4 % of which displayed multidrug resistance. The species identification by WGS analysis revealed the presence of 10 distinct species within the B. cereus group, with B. cereus species being the most prevalent. The highest level of species diversity was observed in sausages. Notably, B. anthracis strains lacking the anthrax toxin genes were detected in flour-based food products and sausages. A total of 20 antibiotic resistance genes have been identified, with ß-lactam resistance genes (bla1, bla2, BcI, BcII, and blaTEM-116) being the most common. The B. tropicus strains exhibit the highest average number of virulence genes (23.4). The diarrheal virulence genes nheABC, hblACD, and cytK were found in numerous strains. Only 4 of the 234 (1.7 %) sequenced strains contain the ces gene cluster linked to emetic symptoms. These data offer valuable insights for public health policymakers on addressing foodborne B. cereus group infections and ensuring food safety.


Assuntos
Bacillus , Bacillus cereus/genética , Enterotoxinas/análise , Microbiologia de Alimentos , Prevalência , Genômica , Contaminação de Alimentos/análise
13.
Int J Food Microbiol ; 418: 110734, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759293

RESUMO

This study reports a comprehensive epidemiological and genetic analysis of V. cholerae strains, specifically non-O1/non-O139 serogroups, isolated from animal-derived food samples in Guangdong province from 2015 to 2019. A total of 21 V. cholerae strains were obtained, which exhibited high resistance rates for nalidixic acid (57.14 %, 12/21), ampicillin (33.33 %, 7/21), and ciprofloxacin (19.05 %, 4/21). The quinolone resistance-related gene, qnrVC, was prevalent in 80.95 % (17/21) of the isolates. Additionally, chromosomally mediated quinolone-resistance mutations, including mutations in GyrA at position 83 (S83I) and ParC at position 85 (S85L), were detected in 47.62 % of the isolates. The combination of target mutation and qnrVC genes was shown to mediate resistance or intermediate resistance to ciprofloxacin in V. cholerae. Furthermore, an IncC-type conjugative plasmid carrying thirteen antibiotic resistance genes, including genes conferring resistance to two clinically important antibiotics, cephalosporins and fluoroquinolones, was identified in the shrimp-derived strain Vc516. While none of our food isolates harbored the toxigenic CTX- and TCP-encoding genes, they did possess genes encoding toxins such as HlyA and Autoinducer-2. Notably, some V. cholerae strains from this study exhibited a close genetic relationship with clinical strains, suggesting their potential to cause human infections. Taken together, this study provides a comprehensive view of the epidemiological features and genetic basis of antimicrobial resistance and virulence potential of V. cholerae strains isolated from food in southern China, thereby advancing our understanding of this important pathogen.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Microbiologia de Alimentos , China/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Animais , Humanos , Testes de Sensibilidade Microbiana , Cólera/microbiologia , Cólera/epidemiologia , Vibrio cholerae/genética , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/isolamento & purificação , Vibrio cholerae não O1/genética , Vibrio cholerae não O1/efeitos dos fármacos , Vibrio cholerae não O1/isolamento & purificação , Plasmídeos/genética
14.
Microbiol Res ; 282: 127672, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447456

RESUMO

Antibiotic resistance is a global health issue, with Klebsiella pneumoniae (KP) posing a particular threat due to its ability to acquire resistance to multiple drug classes rapidly. OXA-232 is a carbapenemase that confers resistance to carbapenems, a class of antibiotics often used as a last resort for treating severe bacterial infections. The study reports the earliest known identification of six OXA-232-producing KP strains that were isolated in Zhejiang, China, in 2008 and 2009 within a hospital, two years prior to the first reported identification of OXA-232 in France. The four KP strains carry the OXA-232 gene and exhibit hypervirulent loci, suggesting a broader temporal and geographical spread and integration of this resistance and virulence than previously recognized with implications for public health. Global analysis of all OXA-232-bearing KP strains revealed that OXA-232-encoding plasmids are conservative, while the strains were very diverse suggesting the plasmid mediated transmission of this carbapenemase genes. Importantly, a large proportion of the OXA-232-bearing KP strains also carried virulence plasmids, in particular the recent emergence of ST15 type of KP that carried both OXA-232-encoding plasmids and hypervirulent (hv) plasmids in China since 2019, highlighting the importance of the emergence of this type of KP strains in clinical setting. The early detection and investigations of OXA-232 in these strains warrants the retrospective studies to uncover the true timeline of antibiotic resistance spread, which could provide valuable insights for shaping future strategies to tackle the global health crisis.


Assuntos
Proteínas de Bactérias , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Estudos Retrospectivos , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Plasmídeos/genética , China
15.
Microbes Infect ; : 105380, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909679

RESUMO

Acinetobacter baumannii (AB) infections have become a global public health concern due to the continued increase in the incidence of infection and the rate of resistance to carbapenems. This study aimed to investigate the genomic features of AB strains recovered from a tertiary hospital and assess the clinical implications of the findings. A total of 217 AB strains were collected between 2016 and 2018 at a tertiary hospital in Guangzhou, with 183 (84.33%) being carbapenem-resistant AB (CRAB), with the main mechanism being the carriage of the blaOXA-23 gene. The overall mortality rate of patients caused by such strains was 15.21% (n = 33). Artificial lung ventilation and the use of meropenem were mortality risk factors in AB-infected patients, while KL2 AB infection was negatively associated. Core genome multilocus sequence typing and clustering analysis were performed on the integrated AB genome collection from the NCBI database and this study to illustrate the population structure among China. The results revealed diverse core genome profiles (n = 17) among AB strains from China, and strains from this single hospital exhibited most of the core genome profiles (n = 13), suggesting genetic variability within the hospital and transmission across the country. These findings show that the high transmission potential of the CRAB strains and meropenem usage that confers a selective advantage of CRAB clinically are two major factors that pose significant challenges to the effective clinical management of AB infections. Understanding the genetic features and transmission patterns of clinical AB strains is crucial for the effective control of infections caused by this pathogen.

16.
mSystems ; 9(6): e0116423, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38747582

RESUMO

Salmonella 4,[5],12:i:-, a monophasic variant of Salmonella Typhimurium, has emerged as a global cause of multidrug-resistant salmonellosis and has become endemic in many developing and developed countries, especially in China. Here, we have sequenced 352 clinical isolates in Guangdong, China, during 2009-2019 and performed a large-scale collection of Salmonella 4,[5],12:i:- with whole genome sequencing (WGS) data across the globe, to better understand the population structure, antimicrobial resistance (AMR) genomic characterization, and transmission routes of Salmonella 4,[5],12:i:- across Guangdong. Salmonella 4,[5],12:i:- strains showed broad genetic diversity; Guangdong isolates were found to be widely distributed among the global lineages. Of note, we identified the formation of a novel Guangdong clade (Bayesian analysis of population structure lineage 1 [BAPS1]) genetically diversified from the global isolates and likely emerged around 1990s. BAPS1 exhibits unique genomic features, including large pan-genome, decreased ciprofloxacin susceptibility due to mutation in gyrA and carriage of plasmid-mediated quinolone resistance (PMQR) genes, and the multidrug-resistant IncHI2 plasmid. Furthermore, high genetic similarity was found between strains collected from Guangdong, Europe, and North America, indicating the association with multiple introductions from overseas. These results suggested that global dissemination and local clonal expansion simultaneously occurred in Guangdong, China, and horizontally acquired resistance to first-line and last-line antimicrobials at local level, underlying emergences of extensive drug and pan-drug resistance. Our findings have increased the knowledge of global and local epidemics of Salmonella 4,[5],12:i:- in Guangdong, China, and provided a comprehensive baseline data set essential for future molecular surveillance.IMPORTANCESalmonella 4,[5],12:i:- has been regarded as the predominant pandemic serotype causing diarrheal diseases globally, while multidrug resistance (MDR) constitutes great public health concerns. This study provided a detailed and comprehensive genome-scale analysis of this important Salmonella serovar in the past decade in Guangdong, China. Our results revealed the complexity of two distinct transmission modes, namely global transmission and local expansion, circulating in Guangdong over a decade. Using phylogeography models, the origin of Salmonella 4,[5],12:i:- was predicted from two aspects, year and country, that is, Salmonella 4,[5],12:i:- emerged in 1983, and was introduced from the UK, and subsequently differentiated into the local endemic lineage circa 1991. Additionally, based on the pan-genome analysis, it was found that the gene accumulation rate in local endemic BAPS 1 lineage was higher than in other lineages, and the horizontal transmission of MDR IncHI2 plasmid associated with high resistance played a major role, which showed the potential threat to public health.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Salmonella , Sequenciamento Completo do Genoma , China/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Infecções por Salmonella/microbiologia , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/transmissão , Infecções por Salmonella/tratamento farmacológico , Antibacterianos/farmacologia , Genoma Bacteriano/genética , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Testes de Sensibilidade Microbiana , Filogenia , Genômica , Plasmídeos/genética
17.
Sci Total Environ ; 868: 161505, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36626997

RESUMO

The antibiotic resistances in bacteria are believed to rapidly evolve over time in the anthropogenic environments which enriched with selection pressures. However, the knowledge regarding the development of antibiotic resistance in wildlife and their habitats is scarce. It is, therefore, of great interest and significance to unveil the yet-unknown antibiotic resistances in wildlife in accordance with One Health concept. To this end, we analyzed the samples taken from wildlife and surrounding environments using a functional metagenomics approach. By functional screening in combination with Illumina sequencing, a total of 32 candidate genes which encoding putative novel ß-lactamase were identified. These putative ß-lactamase were taxonomically assigned into bacteria of 23 genera from 7 phyla, where Proteobacteria, Actinobacteria and Firmicutes were dominant. The following functional assessment demonstrated that 4 novel ß-lactamases, namely blaSSA, blaSSB1, blaSSB2 and blaSSD, were functionally active to confer the phenotypical resistance to bacteria by increasing MICs up to 128-fold. Further analysis indicated that the novel ß-lactamases identified in the current study were able to hydrolyze a broad spectrum of ß-lactams including cephalosporins, and they were genetically unique comparing with known ß-lactamases. The plausible transmission of some novel ß-lactamase genes was supported by our results as the same gene was detected in different samples from different sites. This study shed the light on the active role of wildlife and associated environments as natural reservoirs of novel ß-lactamases, implying that the antibiotic resistances might evolve in absence of selection pressure and threaten public health once spread into clinically important pathogens.


Assuntos
Antibacterianos , beta-Lactamases , Animais , beta-Lactamases/genética , Animais Selvagens , Metagenômica/métodos , beta-Lactamas , Bactérias/genética
18.
Front Microbiol ; 14: 1153139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303808

RESUMO

Introduction: This study aimed to investigate the genetic factors promoting widespread Q6 dissemination of tet(X4) between Escherichia coli and to characterize the genetic contexts of tet(X4). Methods: We isolated E. coli from feces, water, soil and flies collected across a large-scale chicken farm in China in 2020. Antimicrobial susceptibility testing and PFGE typing were used to identify tigecycline resistance and assess clonal relationships among isolates. Plasmids present and genome sequences were analyzed by conjugation, S1 pulsed-field gel electrophoresis (PFGE), plasmid stability testing and whole-genome sequencing. Results: A total of 204 tigecycline-resistant E. coli were isolated from 662 samples. Of these, we identified 165 tet(X4)-carrying E. coli and these strains exhibited a high degree of multidrug resistance. Based on the geographical location distribution of the sampled areas, number of samples in each area and isolation rate of tigecycline-resistant strains and tet(X4)-carrying isolates, 72 tet(X4)-positive isolates were selected for further investigation. Tigecycline resistance was shown to be mobile in 72 isolates and three types of tet(X4)-carrying plasmids were identified, they were IncHI1 (n = 67), IncX1 (n = 3) and pO111-like/IncFIA(HI1) (n = 2). The pO111-like/IncFIA(HI1) is a novel plasmid capable of transferring tet(X4). The transfer efficiency of IncHI1 plasmids was extremely high in most cases and IncHI1 plasmids were stable when transferred into common recipient strains. The genetic structures flanked by IS1, IS26 and ISCR2 containing tet(X4) were complex and varied in different plasmids. Discussion: The widespread dissemination of tigecycline-resistant E. coli is a major threat to public health. This data suggests careful use of tetracycline on farms is important to limit spread of resistance to tigecycline. Multiple mobile elements carrying tet(X4) are in circulation with IncHI1 plasmids the dominant vector in this setting.

19.
Microbiol Spectr ; 11(1): e0311922, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36629419

RESUMO

The banning of colistin as a feed additive for food-producing animals in mainland China in 2017 caused the decline in the prevalence of Escherichia coli-mobilized colistin resistance (mcr-1) in China. Salmonella Typhimurium and its monophasic 1,4,[5],12:i:- variants are also the main species associated with the spread of mcr-1; however, the evidence of the prevalence and transmission of mcr-1 among Salmonella is lacking. Herein, the 5,354 Salmonella isolates recovered from fecal samples of diarrheal patients in Guangdong, Southern China, from 2009 to 2019 were screened for colistin resistance and mcr-1, and mcr-1-positive isolates were characterized based on whole-genome sequencing (WGS) data. Relatively high prevalence rates of colistin resistance and mcr-1 (4.05%/4.50%) were identified, and more importantly, the prevalence trends of colistin-resistant and mcr-1-positive Salmonella isolates had a similar dynamic profile, i.e., both were first detected in 2012 and rapidly increased during 2013 to 2016, followed by a sharp decrease since 2017. WGS and phylogenetic analysis indicate that, whether before or after the ban, the persistence and cross-hospital transmission of mcr-1 are primarily determined by IncHI2 plasmids with similar backbones and sequence type 34 (ST34) Salmonella in specific clades that are associated with a high prevalence of IncHI2 plasmids and clinically important antimicrobial resistance genes, including blaCTX-M-14-fosA3-oqxAB-floR genotypes. Our work reveals the difference in the prevalence rate of mcr-1 in clinical Salmonella before and after the Chinese colistin ban, whereas mcr-1 transmission was closely linked to multidrug-resistant IncHI2 plasmid and ST34 Salmonella across diverse hospitals over 10 years. Continued surveillance is required to explore the factors related to a sharp decrease in mcr-1 after the recent ban and determine whether the ban has affected the carriage of mcr-1 in Salmonella circulating in the health care system. IMPORTANCE Colistin is one of the last-line antibiotics for the clinical treatment of Enterobacteriaceae. However, the emergence of the mobilized colistin resistance (mcr-1) gene has spread throughout the entire human health system and largely threatens the usage of colistin in the clinical setting. In this study, we investigated the existence of mcr-1 in clinical Salmonella from a 10-year continuous surveillance and genomic study. Overall, the colistin resistance rate and mcr-1 carriage of Salmonella in tertiary hospitals in Guangdong (2009 to 2019) were relatively high and, importantly, rapidly increased from 2013 to 2016 and significantly decreased after the Chinese colistin withdrawal. However, before or after the ban, the MDR IncHI2 plasmid with a similar backbone and ST34 Salmonella were the main vectors involved in the spread of mcr-1. Interestingly, these Chinese mcr-1-carrying Salmonella obtain phylogenetically and phylogeographically distinct patterns compared with those from other continents and are frequently associated with clinically important ARGs including the extended-spectrum ß-lactamases. Our data confirmed that the national stewardship intervention seems to be successful in blocking antibiotic resistance determinants and that continued surveillance of colistin resistance in clinical settings, farm animals, and related products is necessary.


Assuntos
Colistina , Proteínas de Escherichia coli , Animais , Humanos , Colistina/farmacologia , Salmonella typhimurium/genética , Pacientes Ambulatoriais , Filogenia , Antibacterianos/farmacologia , Escherichia coli/genética , China/epidemiologia , Proteínas de Escherichia coli/genética , Genômica , Plasmídeos/genética , Diarreia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
20.
Microbiol Spectr ; 11(3): e0030923, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154736

RESUMO

Streptococcus suis is a zoonotic pathogen that causes disease in humans after exposure to infected pigs or pig-derived food products. In this study, we examined the serotype distribution, antimicrobial resistance phenotypes and genotypes, integrative and conjugative elements (ICEs), and associated genomic environments of S. suis isolates from humans and pigs in China from 2008 to 2019. We identified isolates of 13 serotypes, predominated by serotype 2 (40/96; 41.7%), serotype 3 (10/96; 10.4%), and serotype 1 (6/96; 6.3%). Whole-genome sequencing analysis revealed that these isolates possessed 36 different sequence types (STs), and ST242 and ST117 were the most prevalent. Phylogenetic analysis revealed possible animal and human clonal transmission, while antimicrobial susceptibility testing indicated high-level resistance to macrolides, tetracyclines, and aminoglycosides. These isolates carried 24 antibiotic resistance genes (ARGs) that conferred resistance to 7 antibiotic classes. The antibiotic resistance genotypes were directly correlated with the observed phenotypes. We also identified ICEs in 10 isolates, which were present in 4 different genetic environments and possessed differing ARG combinations. We also predicted and confirmed by PCR analysis the existence of a translocatable unit (TU) in which the oxazolidinone resistance gene optrA was flanked by IS1216E elements. One-half (5/10) of the ICE-carrying strains could be mobilized by conjugation. A comparison of the parental recipient with an ICE-carrying transconjugant in a mouse in vivo thigh infection model indicated that the ICE strain could not be eliminated with tetracycline treatment. S. suis therefore poses a significant challenge to global public health and requires continuous monitoring, especially for the presence of ICEs and associated ARGs that can be transferred via conjugation. IMPORTANCE S. suis is a serious zoonotic pathogen. In this study, we investigated the epidemiological and molecular characteristics of 96 S. suis isolates from 10 different provinces of China from 2008 to 2019. A subset of these isolates (10) carried ICEs that were able to be horizontally transferred among isolates of different S. suis serotypes. A mouse thigh infection model revealed that ICE-facilitated ARG transfer promoted resistance development. S. suis requires continuous monitoring, especially for the presence of ICEs and associated ARGs that can be transferred via conjugation.


Assuntos
Oxazolidinonas , Streptococcus suis , Humanos , Suínos , Animais , Camundongos , Streptococcus suis/genética , Filogenia , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA