Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 22(1): 460, 2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34147070

RESUMO

BACKGROUND: Duplicated gene pairs produced by ancient polyploidy maintain high sequence similarity over a long period of time and may result from illegitimate recombination between homeologous chromosomes. The genomes of Asian cultivated rice Oryza sativa ssp. indica (XI) and Oryza sativa ssp. japonica (GJ) have recently been updated, providing new opportunities for investigating ongoing gene conversion events and their impact on genome evolution. RESULTS: Using comparative genomics and phylogenetic analyses, we evaluated gene conversion rates between duplicated genes produced by polyploidization 100 million years ago (mya) in GJ and XI. At least 5.19-5.77% of genes duplicated across the three rice genomes were affected by whole-gene conversion after the divergence of GJ and XI at ~ 0.4 mya, with more (7.77-9.53%) showing conversion of only portions of genes. Independently converted duplicates surviving in the genomes of different subspecies often use the same donor genes. The ongoing gene conversion frequency was higher near chromosome termini, with a single pair of homoeologous chromosomes, 11 and 12, in each rice genome being most affected. Notably, ongoing gene conversion has maintained similarity between very ancient duplicates, provided opportunities for further gene conversion, and accelerated rice divergence. Chromosome rearrangements after polyploidization are associated with ongoing gene conversion events, and they directly restrict recombination and inhibit duplicated gene conversion between homeologous regions. Furthermore, we found that the converted genes tended to have more similar expression patterns than nonconverted duplicates. Gene conversion affects biological functions associated with multiple genes, such as catalytic activity, implying opportunities for interaction among members of large gene families, such as NBS-LRR disease-resistance genes, contributing to the occurrence of the gene conversion. CONCLUSION: Duplicated genes in rice subspecies generated by grass polyploidization ~ 100 mya remain affected by gene conversion at high frequency, with important implications for the divergence of rice subspecies.


Assuntos
Oryza , Idoso de 80 Anos ou mais , Evolução Molecular , Duplicação Gênica , Genes Duplicados , Genoma de Planta , Humanos , Oryza/genética , Filogenia
2.
Mol Biol Evol ; 35(1): 16-26, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029269

RESUMO

Cucurbitaceae plants are of considerable biological and economic importance, and genomes of cucumber, watermelon, and melon have been sequenced. However, a comparative genomics exploration of their genome structures and evolution has not been available. Here, we aimed at performing a hierarchical inference of genomic homology resulted from recursive paleopolyploidizations. Unexpectedly, we found that, shortly after a core-eudicot-common hexaploidy, a cucurbit-common tetraploidization (CCT) occurred, overlooked by previous reports. Moreover, we characterized gene loss (and retention) after these respective events, which were significantly unbalanced between inferred subgenomes, and between plants after their split. The inference of a dominant subgenome and a sensitive one suggested an allotetraploid nature of the CCT. Besides, we found divergent evolutionary rates among cucurbits, and after doing rate correction, we dated the CCT to be 90-102 Ma, likely common to all Cucurbitaceae plants, showing its important role in the establishment of the plant family.


Assuntos
Cucurbitaceae/genética , Análise de Sequência de DNA/métodos , Sequência de Bases/genética , Mapeamento Cromossômico/métodos , Evolução Molecular , Variação Genética/genética , Genoma de Planta/genética , Genômica/métodos , Taxa de Mutação , Filogenia , Poliploidia , Tetraploidia
3.
Plant Physiol ; 174(1): 284-300, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28325848

RESUMO

Mainly due to their economic importance, genomes of 10 legumes, including soybean (Glycine max), wild peanut (Arachis duranensis and Arachis ipaensis), and barrel medic (Medicago truncatula), have been sequenced. However, a family-level comparative genomics analysis has been unavailable. With grape (Vitis vinifera) and selected legume genomes as outgroups, we managed to perform a hierarchical and event-related alignment of these genomes and deconvoluted layers of homologous regions produced by ancestral polyploidizations or speciations. Consequently, we illustrated genomic fractionation characterized by widespread gene losses after the polyploidizations. Notably, high similarity in gene retention between recently duplicated chromosomes in soybean supported the likely autopolyploidy nature of its tetraploid ancestor. Moreover, although most gene losses were nearly random, largely but not fully described by geometric distribution, we showed that polyploidization contributed divergently to the copy number variation of important gene families. Besides, we showed significantly divergent evolutionary levels among legumes and, by performing synonymous nucleotide substitutions at synonymous sites correction, redated major evolutionary events during their expansion. This effort laid a solid foundation for further genomics exploration in the legume research community and beyond. We describe only a tiny fraction of legume comparative genomics analysis that we performed; more information was stored in the newly constructed Legume Comparative Genomics Research Platform (www.legumegrp.org).


Assuntos
Fabaceae/genética , Genoma de Planta/genética , Genômica/métodos , Filogenia , Mapeamento Cromossômico , Evolução Molecular , Fabaceae/classificação , Duplicação Gênica , Genes de Plantas/genética , Modelos Genéticos , Poliploidia , Especificidade da Espécie
4.
Genes (Basel) ; 12(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34946893

RESUMO

The peanut (Arachis hypogaea L.) is the leading oil and food crop among the legume family. Extensive duplicate gene pairs generated from recursive polyploidizations with high sequence similarity could result from gene conversion, caused by illegitimate DNA recombination. Here, through synteny-based comparisons of two diploid and three tetraploid peanut genomes, we identified the duplicated genes generated from legume common tetraploidy (LCT) and peanut recent allo-tetraploidy (PRT) within genomes. In each peanut genome (or subgenomes), we inferred that 6.8-13.1% of LCT-related and 11.3-16.5% of PRT-related duplicates were affected by gene conversion, in which the LCT-related duplicates were the most affected by partial gene conversion, whereas the PRT-related duplicates were the most affected by whole gene conversion. Notably, we observed the conversion between duplicates as the long-lasting contribution of polyploidizations accelerated the divergence of different Arachis genomes. Moreover, we found that the converted duplicates are unevenly distributed across the chromosomes and are more often near the ends of the chromosomes in each genome. We also confirmed that well-preserved homoeologous chromosome regions may facilitate duplicates' conversion. In addition, we found that these biological functions contain a higher number of preferentially converted genes, such as catalytic activity-related genes. We identified specific domains that are involved in converted genes, implying that conversions are associated with important traits of peanut growth and development.


Assuntos
Arachis/genética , Evolução Molecular , Genes Duplicados , Genoma de Planta , Poliploidia , Recombinação Genética , Arachis/classificação , Arachis/metabolismo , Biologia Computacional , Bases de Dados Genéticas , Análise de Sequência de DNA/métodos
5.
Genomics Proteomics Bioinformatics ; 18(3): 333-340, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-33157303

RESUMO

Lycophytes and seed plants constitute the typical vascular plants. Lycophytes have been thought to have no paleo-polyploidization although the event is known to be critical for the fast expansion of seed plants. Here, genomic analyses including the homologous gene dot plot analysis detected multiple paleo-polyploidization events, with one occurring approximately 13-15 million years ago (MYA) and another about 125-142 MYA, during the evolution of the genome of Selaginella moellendorffii, a model lycophyte. In addition, comparative analysis of reconstructed ancestral genomes of lycophytes and angiosperms suggested that lycophytes were affected by more paleo-polyploidization events than seed plants. Results from the present genomic analyses indicate that paleo-polyploidization has contributed to the successful establishment of both lineages-lycophytes and seed plants-of vascular plants.


Assuntos
Evolução Molecular , Genoma de Planta , Poliploidia , Selaginellaceae/genética , Genômica , Filogenia
6.
Hortic Res ; 7: 20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133148

RESUMO

Cold stress profoundly affects plant growth and development and is a key factor affecting the geographic distribution and evolution of plants. Plants have evolved adaptive mechanisms to cope with cold stress. Here, through the genomic analysis of Arabidopsis, three Brassica species and 17 other representative species, we found that both cold-related genes (CRGs) and their collinearity were preferentially retained after polyploidization followed by genome instability, while genome-wide gene sets exhibited a variety of other expansion mechanisms. The cold-related regulatory network was increased in Brassicaceae genomes, which were recursively affected by polyploidization. By combining our findings regarding the selective retention of CRGs from this ecological genomics study with the available knowledge of cold-induced chromosome doubling, we hypothesize that cold stress may have contributed to the success of polyploid plants through both increasing polyploidization and selectively maintaining CRGs during evolution. This hypothesis requires further biological and ecological exploration to obtain solid supporting evidence, which will potentially contribute to understanding the generation of polyploids and to the field of ecological genomics.

7.
Front Plant Sci ; 10: 986, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447866

RESUMO

Owing to their nutritional and commercial values, the genomes of several citrus plants have been sequenced, and the genome of one close relative in the Rutaceae family, atalantia (Atalantia buxifolia), has also been sequenced. Here, we show a family-level comparative analysis of Rutaceae genomes. By using grape as the outgroup and checking cross-genome gene collinearity, we systematically performed a hierarchical and event-related alignment of Rutaceae genomes, and produced a gene list defining homologous regions based on ancestral polyploidization or speciation. We characterized genome fractionation resulting from gene loss or relocation, and found that erosion of gene collinearity could largely be described by a geometric distribution. Moreover, we found that well-assembled Rutaceae genomes retained significantly more genes (65-82%) than other eudicots affected by recursive polyploidization. Additionally, we showed divergent evolutionary rates among Rutaceae plants, with sweet orange evolving faster than others, and by performing evolutionary rate correction, re-dated major evolutionary events during their evolution. We deduced that the divergence between the Rutaceae family and grape occurred about 81.15-91.74 million years ago (mya), while the split between citrus and atalantia plants occurred <10 mya. In addition, we showed that polyploidization led to a copy number expansion of key gene families contributing to the biosynthesis of vitamin C. Overall, the present effort provides an important comparative genomics resource and lays a foundation to understand the evolution and functional innovation of Rutaceae genomes.

8.
Front Genet ; 10: 807, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552101

RESUMO

Polyploidy has contributed to the divergence and domestication of plants; however, estimation of the relative roles that different types of polyploidy have played during evolution has been difficult. Unbalanced and balanced gene removal was previously related to allopolyploidies and autopolyploidies, respectively. Here, to infer the types of polyploidies and evaluate their evolutionary effects, we devised a statistic, the Polyploidy-index or P-index, to characterize the degree of divergence between subgenomes of a polyploidy, to find whether there has been a balanced or unbalanced gene removal from the homoeologous regions. Based on a P-index threshold of 0.3 that distinguishes between known or previously inferred allo- or autopolyploidies, we found that 87.5% of 24 angiosperm paleo-polyploidies were likely produced by allopolyploidizations, responsible for establishment of major tribes such as Poaceae and Fabaceae, and large groups such as monocots and eudicots. These findings suggest that >99.7% of plant genomes likely derived directly from allopolyploidies, with autopolyploidies responsible for the establishment of only a few small genera, including Glycine, Malus, and Populus, each containing tens of species. Overall, these findings show that polyploids with high divergence between subgenomes (presumably allopolyploids) established the major plant groups, possibly through secondary contact between previously isolated populations and hybrid vigor associated with their re-joining.

9.
iScience ; 7: 230-240, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30267683

RESUMO

The genome of kiwifruit (Actinidia chinensis) was sequenced previously, the first in the Actinidiaceae family. It was shown to have been affected by polyploidization events, the nature of which has been elusive. Here, we performed a reanalysis of the genome and found clear evidence of 2 tetraploidization events, with one occurring ∼50-57 million years ago (Mya) and the other ∼18-20 Mya. Two subgenomes produced by each event have been under balanced fractionation. Moreover, genes were revealed to express in a balanced way between duplicated copies of chromosomes. Besides, lowered evolutionary rates of kiwifruit genes were observed. These findings could be explained by the likely auto-tetraploidization nature of the polyploidization events. Besides, we found that polyploidy contributed to the expansion of key functional genes, e.g., vitamin C biosynthesis genes. The present work also provided an important comparative genomics resource in the Actinidiaceae and related families.

10.
Front Plant Sci ; 8: 571, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28446920

RESUMO

As a model plant to study perennial trees in the Salicaceae family, the poplar (Populus trichocarpa) genome was sequenced, revealing recurrent paleo-polyploidizations during its evolution. A comparative and hierarchical alignment of its genome to a well-selected reference genome would help us better understand poplar's genome structure and gene family evolution. Here, by adopting the relatively simpler grape (Vitis vinifera) genome as reference, and by inferring both intra- and inter-genomic gene collinearity, we produced a united alignment of these two genomes and hierarchically distinguished the layers of paralogous and orthologous genes, as related to recursive polyploidizations and speciation. We uncovered homologous blocks in the grape and poplar genomes and also between them. Moreover, we characterized the genes missing and found that poplar had two considerably similar subgenomes (≤0.05 difference in gene deletion) produced by the Salicaceae-common tetraploidization, suggesting its autotetraploid nature. Taken together, this work provides a timely and valuable dataset of orthologous and paralogous genes for further study of the genome structure and functional evolution of poplar and other Salicaceae plants.

11.
Front Plant Sci ; 8: 1480, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28912789

RESUMO

Grass genomes are complicated structures as they share a common tetraploidization, and particular genomes have been further affected by extra polyploidizations. These events and the following genomic re-patternings have resulted in a complex, interweaving gene homology both within a genome, and between genomes. Accurately deciphering the structure of these complicated plant genomes would help us better understand their compositional and functional evolution at multiple scales. Here, we build on our previous research by performing a hierarchical alignment of the common wheat genome vis-à-vis eight other sequenced grass genomes with most up-to-date assemblies, and annotations. With this data, we constructed a list of the homologous genes, and then, in a layer-by-layer process, separated their orthology, and paralogy that were established by speciations and recursive polyploidizations, respectively. Compared with the other grasses, the far fewer collinear outparalogous genes within each of three subgenomes of common wheat suggest that homoeologous recombination, and genomic fractionation should have occurred after its formation. In sum, this work contributes to the establishment of an important and timely comparative genomics platform for researchers in the grass community and possibly beyond. Homologous gene list can be found in Supplemental material.

12.
Front Genet ; 7: 174, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27757123

RESUMO

Rice is one of the most researched model plant, and has a genome structure most resembling that of the grass common ancestor after a grass common tetraploidization ∼100 million years ago. There has been a standing controversy whether there had been five or seven basic chromosomes, before the tetraploidization, which were tackled but could not be well solved for the lacking of a sequenced and assembled outgroup plant to have a conservative genome structure. Recently, the availability of pineapple genome, which has not been subjected to the grass-common tetraploidization, provides a precious opportunity to solve the above controversy and to research into genome changes of rice and other grasses. Here, we performed a comparative genomics analysis of pineapple and rice, and found solid evidence that grass-common ancestor had 2n = 2x = 14 basic chromosomes before the tetraploidization and duplicated to 2n = 4x = 28 after the event. Moreover, we proposed that enormous gene missing from duplicated regions in rice should be explained by an allotetraploid produced by prominently divergent parental lines, rather than gene losses after their divergence. This means that genome fractionation might have occurred before the formation of the allotetraploid grass ancestor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA