Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38446738

RESUMO

The family of Janus Kinases (JAKs) associated with the JAK-signal transducers and activators of transcription signaling pathway plays a vital role in the regulation of various cellular processes. The conformational change of JAKs is the fundamental steps for activation, affecting multiple intracellular signaling pathways. However, the transitional process from inactive to active kinase is still a mystery. This study is aimed at investigating the electrostatic properties and transitional states of JAK1 to a fully activation to a catalytically active enzyme. To achieve this goal, structures of the inhibited/activated full-length JAK1 were modelled and the energies of JAK1 with Tyrosine Kinase (TK) domain at different positions were calculated, and Dijkstra's method was applied to find the energetically smoothest path. Through a comparison of the energetically smoothest paths of kinase inactivating P733L and S703I mutations, an evaluation of the reasons why these mutations lead to negative or positive regulation of JAK1 are provided. Our energy analysis suggests that activation of JAK1 is thermodynamically spontaneous, with the inhibition resulting from an energy barrier at the initial steps of activation, specifically the release of the TK domain from the inhibited Four-point-one, Ezrin, Radixin, Moesin-PK cavity. Overall, this work provides insights into the potential pathway for TK translocation and the activation mechanism of JAK1.


Assuntos
Transdução de Sinais , Mutação , Domínios Proteicos
2.
Small ; 20(23): e2309206, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38149505

RESUMO

Ferroptosis is an emerging non-apoptotic death process, mainly involving lipid peroxidation (LPO) caused by iron accumulation, which is potentially lethal to the intrinsically apoptotic-resistant malignant tumor. However, it is still restricted by the inherent antioxidant systems of tumor cells and the poor efficacy of traditional iron-based ferroptosis initiators. Herein, the study develops a novel ferroptosis-inducing agent based on PEGylated Cu+/Cu2+-doped black phosphorus@polypyrrole heterojunction (BP@CPP), which is constructed by utilizing the phosphate on the surface of BP to chelate Cu ions and initiating subsequent in situ polymerization of pyrrole. As a novel Z-scheme heterojunction, BP@CPP possesses an excellent photocatalytic activity in which the separated electron-hole pairs under laser irradiation endow it with powerful oxidizing and reducing capacities, which synergy with Cu+/Cu2+ self-cycling catalyzing Fenton-like reaction to further strengthen reactive oxygen species (ROS) accumulation, glutathione (GSH) depletion, and glutathione peroxidase 4 (GPX4) inactivation, ultimately leading to efficient ferroptosis. Systematic in vitro and in vivo evaluations demonstrate that BP@CPP effectively inhibit tumor growth by inducing desired ferroptosis while maintaining a favorable biosafety in the body. Therefore, the developed BP@CPP-based ferroptosis initiator provides a promising strategy for ferroptosis-like cancer therapy.


Assuntos
Cobre , Ferroptose , Oxirredução , Espécies Reativas de Oxigênio , Ferroptose/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Cobre/química , Cobre/farmacologia , Animais , Linhagem Celular Tumoral , Polímeros/química , Polímeros/farmacologia , Pirróis/química , Pirróis/farmacologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Camundongos , Glutationa/metabolismo , Fósforo/química
3.
BMC Cancer ; 24(1): 967, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112947

RESUMO

BACKGROUND: This study aimed to evaluate the effectiveness and safety of recombinant human endostatin (Rh-endostatin) plus programmed cell death 1 (PD-1) inhibitors and chemotherapy as first-line treatment for advanced or metastatic non-small cell lung cancer (NSCLC) in a real-world setting. METHODS: This was a retrospective study on patients with EGFR/ALK-negative, advanced or metastatic NSCLC. Patients received Rh-endostatin plus PD-1 inhibitors and chemotherapy every three weeks for 4 to 6 cycles. The primary endpoint was progression-free survival (PFS), and the secondary endpoints were objective response rate (ORR), disease control rate (DCR), overall survival (OS), and safety. RESULTS: A total of 68 patients were included in this retrospective analysis. As of data cutoff (December 13, 2022), the median follow-up of 21.4 months (interquartile range [IQR], 8.3-44.4 months). The median PFS and OS was 22.0 (95% confidence interval [CI]: 16.6-27.4) and 31.0 months (95% CI: 23.4-not evaluable [NE]), respectively. The ORR was 72.06% (95% CI: 59.85-82.27%), and DCR was 95.59% (95% CI: 87.64-99.08%). Patients with stage IIIB/IIIC NSCLC had significantly longer median PFS (23.4 vs. 13.2 months), longer median OS (not reached vs. 18.0 months), and higher ORR (89.2% vs. 51.6%) than those with stage IV NSCLC (all p ≤ 0.001). The ORR was higher in patients with high PD-L1 expression (tumor proportion score [TPS] ≥ 50%) than in those with low PD-L1 expression or positive PD-L1 expression (75% vs. 50%, p = 0.025). All patients experienced treatment-related adverse events (TRAEs), and ≥ grade 3 TRAEs occurred in 16 (23.53%) patients. CONCLUSIONS: Rh-endostatin combined with PD-1 inhibitors plus chemotherapy as first-line treatment yielded favorable effectiveness with a manageable profile in patients with advanced or metastatic NSCLC, representing a promising treatment modality.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Pulmonar de Células não Pequenas , Endostatinas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Endostatinas/administração & dosagem , Endostatinas/uso terapêutico , Feminino , Masculino , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/metabolismo , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/efeitos adversos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Adulto , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Intervalo Livre de Progressão , Resultado do Tratamento
4.
Fish Shellfish Immunol ; 150: 109661, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38821227

RESUMO

IgNAR exhibits significant promise in the fields of cancer and anti-virus biotherapies. Notably, the variable regions of IgNAR (VNAR) possess comparable antigen binding affinity with much smaller molecular weight (∼12 kDa) compared to IgNAR. Antigen specific VNAR screening is a changeling work, which limits its application in medicine and therapy fields. Though phage display is a powerful tool for VNAR screening, it has a lot of drawbacks, such as small library coverage, low expression levels, unstable target protein, complicating and time-consuming procedures. Here we report VANR screening with next generation sequencing (NGS) could effectively overcome the limitations of phage display, and we successfully identified approximately 3000 BAFF-specific VNARs in Chiloscyllium plagiosum vaccinated with the BAFF antigen. The results of modelling and molecular dynamics simulation and ELISA assay demonstrated that one out of the top five abundant specific VNARs exhibited higher binding affinity to the BAFF antigen than those obtained through phage display screening. Our data indicates NGS would be an alternative way for VNAR screening with plenty of advantages.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Tubarões , Tubarões/imunologia , Tubarões/genética , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Antígenos/imunologia , Antígenos/genética , Doenças dos Peixes/imunologia
5.
Environ Res ; 259: 119537, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960362

RESUMO

To recover methane from waste activated sludge through anaerobic digestion (AD) is one promising alternative to achieve carbon neutrality for wastewater treatment plants. However, humic acids (HAs) are one of the major compositions in waste activated sludge, and their accumulation performs inhibition effects on AD. This study investigated the potentials of biochar (BC) in alleviating inhibition effects of HAs on AD. Results showed that although the accumulated HAs reduced methane yield by 9.37% compared to control, the highest methane yield, 132.6 mL CH4/g VSS, was obtained after adding BC, which was 45.9% higher than that in HA group. Mechanism analysis showed that BC promoted the activities of hydrolase such as protease and α-glucosidase, which were 69.7% and 29.7% higher than those in HA group, respectively. The conversion of short-chain fatty acids was accelerated. In addition, the evolutions of electroactive microorganisms like Clostridium_sensu_stricto_13 and Methanosaeta were consistent with the activitiies of electron transfer and the contents of cytochrome c. Furthermore, parts of HAs rather than all of them were adsorbed by BC, and the remaining free HAs and BC formed synergistic effects on methanogenesis, then both CO2 reduction and acetoclastic methanogenesis pathways were improved. The findings may provide some solutions to alleviate inhibition effects of HAs on AD.

6.
Appl Opt ; 63(8): 2109-2120, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38568655

RESUMO

This paper proposes a switchable multifunctional metamaterial device operating in the terahertz (THz) band. The device is loaded with an equivalent diode and utilizes vanadium dioxide (V O 2). The middle layer of the whole device, a metal layer, divides the device into the I side and the II side. When the diode is ON, the I side can achieve dual-band absorption at 1.975 and 4.345 THz. When the diode is OFF, the I side can achieve single-band absorption at 4.28 THz. In the case of V O 2 being insulating, the II side can achieve linear-to-linear (LTL) polarization conversion at 2.342-4.18 THz. In the case of V O 2 being conductive, the II side can realize linear-to-circular (LTC) polarization conversion at 2.105-3.283 THz. The device provides a new strategy for the subsequent combination of multiple functions. The device can be used in electromagnetic stealth, intelligent applications, radiometers, and sensors and has relatively large application potential in miniaturized multifunctional metamaterials and THz band research.

7.
Biophys J ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38160255

RESUMO

Drosophila Ncd proteins are motor proteins that play important roles in spindle organization. Ncd and the tubulin dimer are highly charged. Thus, it is crucial to investigate Ncd-tubulin dimer interactions in the presence of ions, especially ions that are bound or restricted at the Ncd-tubulin dimer binding interfaces. To consider the ion effects, widely used implicit solvent models treat ions implicitly in the continuous solvent environment without focusing on the individual ions' effects. But highly charged biomolecules such as the Ncd and tubulin dimer may capture some ions at highly charged regions as bound ions. Such bound ions are restricted to their binding sites; thus, they can be treated as part of the biomolecules. By applying multiscale computational methods, including the machine-learning-based Hybridizing Ions Treatment-2 program, molecular dynamics simulations, DelPhi, and DelPhiForce, we studied the interaction between the Ncd motor domain and the tubulin dimer using a hybrid solvent model, which considers the bound ions explicitly and the other ions implicitly in the solvent environment. To identify the importance of treating bound ions explicitly, we also performed calculations using the implicit solvent model without considering the individual bound ions. We found that the calculations of the electrostatic features differ significantly between those of the hybrid solvent model and the pure implicit solvent model. The analyses show that treating bound ions at highly charged regions explicitly is crucial for electrostatic calculations. This work proposes a machine-learning-based approach to handle the bound ions using the hybrid solvent model. Such an approach is not only capable of handling kinesin-tubulin complexes but is also appropriate for other highly charged biomolecules, such as DNA/RNA, viral capsid proteins, etc.

8.
Microbiol Spectr ; : e0105124, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058029

RESUMO

Microorganisms are crucial components of the aquatic ecosystem due to their immense diversity and abundance. They are vital in sustaining ecological services, especially in maintaining essential biogeochemical cycles. Recent years have seen a substantial increase in surplus nitrogenous pollutants in aquatic ecosystems due to the heightened occurrence of anthropogenic activities. Elevated levels of free ammonia (FA, NH3), stemming from the discharge of excess nitrogenous pollutants, have caused notable fluctuations in aquatic ecosystems, leading to water eutrophication and various ecological challenges. The impact of these oscillations on microbial communities in aquatic ecosystems has not been extensively studied. This study employed 16S rRNA gene amplicon sequencing to systematically investigate the dynamics, co-occurrence networks, and assembly processes of microbial communities and their subcommunities (abundant, moderate, and rare) in the Luanhe River Diversion Project in China. Our findings indicate that NH3 concentration significantly influences the dynamics of microbial communities, with a notable decrease in community Richness and Phylogenetic Distance alongside increased community dissimilarity under higher NH3 conditions. The analysis revealed that certain microbial groups, particularly Actinobacteriaota, were notably more prevalent in environments with elevated NH3 levels, suggesting their potential resilience or adaptive responses to NH3 stress. Additionally, through co-occurrence network analysis, we observed dynamic changes in network topology and increased connectedness under NH3 stress. Key nodes, identified as connectors and module hubs, played crucial roles in maintaining network structure, particularly Cyanobacteria and Actinobacteriaota. Furthermore, stochastic processes, particularly drift and dispersal limitation, predominantly shaped the microbial communities. Within the three subcommunities, the impact of drift became more pronounced as the effect of dispersal limitation diminished. Overall, elucidating the dynamics of microbial communities in aquatic ecosystems exposed to NH3 can enhance our comprehension of the ecological mechanisms of microbial communities and provide new insights into the conservation of microbial community diversity and ecological functions. IMPORTANCE: The research presented in this paper explores how varying concentrations of free ammonia impact microbial communities in aquatic ecosystems. By employing advanced gene sequencing techniques, the study reveals significant changes in microbial diversity and network structures in response to increased ammonia levels. Key findings indicate that high ammonia concentrations lead to a decrease in microbial richness and diversity while increasing community dissimilarity. Notably, certain microbial groups, like Actinobacteria, show resilience to ammonia stress. This research enhances our understanding of how pollution affects microbial ecosystems and underscores the importance of maintaining balanced ammonia levels to preserve microbial diversity and ecosystem health.

9.
ACS Appl Mater Interfaces ; 16(2): 2166-2179, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170968

RESUMO

Hypoxia is a pervasive feature of solid tumors, which significantly limits the therapeutic effect of photodynamic therapy (PDT) and further influences the immunotherapy efficiency in breast cancer. However, the transient alleviation of tumor hypoxia fails to address the underlying issue of increased oxygen consumption, resulting from the rapid proliferation of tumor cells. At present, studies have found that the reduction of the oxygen consumption rate (OCR) by cytochrome C oxidase (COX) inhibition that induced oxidative phosphorylation (OXHPOS) suppression was able to solve the proposed problem. Herein, we developed a specific mitochondrial-targeting nanotrapper (I@MSN-Im-PEG), which exhibited good copper chelating ability to inhibit COX for reducing the OCR. The results proved that the nanotrapper significantly alleviated the hypoxic tumor microenvironment by copper chelation in mitochondria and enhanced the PDT effect in vitro and in vivo. Meanwhile, the nanotrapper improved photoimmunotherapy through both enhancing PDT-induced immunogenetic cell death (ICD) effects and reversing Treg-mediated immune suppression on 4T1 tumor-bearing mice. The mitochondrial-targeting nanotrapper provided a novel and efficacious strategy to enhance the PDT effect and amplify photoimmunotherapy in breast cancer.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Fotoquimioterapia/métodos , Cobre/farmacologia , Hipóxia Tumoral , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Hipóxia/tratamento farmacológico , Imunoterapia , Mitocôndrias/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/metabolismo , Microambiente Tumoral
10.
J Control Release ; 371: 29-42, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763389

RESUMO

The tumor develops defense tactics, including conversing the mechanical characteristics of tumor cells and their surrounding environment. A recent study reported that cholesterol depletion stiffens tumor cells, which could enhance adaptive T-cell immunotherapy. However, it remains unclear whether reducing the cholesterol in tumor cells contributes to re-educating the stiff tumor matrix, which serves as a physical barrier against drug penetration. Herein, we found that depleting cholesterol from tumor cells can demolish the intratumor physical barrier by disrupting the mechanical signal transduction between tumor cells and the extracellular matrix through the destruction of lipid rafts. This disruption allows nanoparticles (H/S@hNP) to penetrate deeply, resulting in improved photodynamic treatment. Our research also indicates that cholesterol depletion can inhibit the epithelial-mesenchymal transition and repolarize tumor-associated macrophages from M2 to M1, demonstrating the essential role of cholesterol in tumor progression. Overall, this study reveals that a cholesterol-depleted, softened tumor matrix reduces the difficulty of drug penetration, leading to enhanced antitumor therapeutics.


Assuntos
Colesterol , Colesterol/metabolismo , Animais , Humanos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Nanopartículas/administração & dosagem , Camundongos , Fotoquimioterapia/métodos , Microambiente Tumoral/efeitos dos fármacos , Feminino , Matriz Extracelular/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos
11.
Cancer Res ; 84(14): 2265-2281, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718296

RESUMO

Circadian clock perturbation frequently occurs in cancer and facilitates tumor progression by regulating malignant growth and shaping the immune microenvironment. Emerging evidence has indicated that clock genes are disrupted in melanoma and linked to immune escape. Herein, we found that the expression of retinoic acid receptor-related orphan receptor-α (RORA) is downregulated in melanoma patients and that patients with higher RORA expression have a better prognosis after immunotherapy. Additionally, RORA was significantly positively correlated with T-cell infiltration and recruitment. Overexpression or activation of RORA stimulated cytotoxic T-cell-mediated antitumor responses. RORA bound to the CD274 promoter and formed an inhibitory complex with HDAC3 to suppress PD-L1 expression. In contrast, the DEAD-box helicase family member DDX3X competed with HDAC3 for binding to RORA, and DDX3X overexpression promoted RORA release from the suppressive complex and thereby increased PD-L1 expression to generate an inhibitory immune environment. The combination of a RORA agonist with an anti-CTLA4 antibody synergistically increased T-cell antitumor immunity in vivo. A score based on the combined expression of HDAC3, DDX3X, and RORA correlated with immunotherapy response in melanoma patients. Together, this study elucidates a mechanism of clock component-regulated antitumor immunity, which will help inform the use of immunotherapy and lead to improved outcomes for melanoma patients receiving combined therapeutic treatments. Significance: RORA forms a corepressor complex to inhibit PD-L1 expression and activate antitumor T-cell responses, indicating that RORA is a potential target and predictive biomarker to improve immunotherapy response in melanoma patients.


Assuntos
Antígeno B7-H1 , Relógios Circadianos , Melanoma , Humanos , Melanoma/imunologia , Melanoma/patologia , Melanoma/genética , Melanoma/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Animais , Camundongos , Relógios Circadianos/genética , Relógios Circadianos/imunologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Microambiente Tumoral/imunologia , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Monitorização Imunológica , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Masculino , Feminino , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Imunoterapia/métodos , Prognóstico
12.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365228

RESUMO

The short-chain gaseous alkanes (ethane, propane, and butane; SCGAs) are important components of natural gas, yet their fate in environmental systems is poorly understood. Microbially mediated anaerobic oxidation of SCGAs coupled to nitrate reduction has been demonstrated for propane, but is yet to be shown for ethane or butane-despite being energetically feasible. Here we report two independent bacterial enrichments performing anaerobic ethane and butane oxidation, respectively, coupled to nitrate reduction to dinitrogen gas and ammonium. Isotopic 13C- and 15N-labelling experiments, mass and electron balance tests, and metabolite and meta-omics analyses collectively reveal that the recently described propane-oxidizing "Candidatus Alkanivorans nitratireducens" was also responsible for nitrate-dependent anaerobic oxidation of the SCGAs in both these enrichments. The complete genome of this species encodes alkylsuccinate synthase genes for the activation of ethane/butane via fumarate addition. Further substrate range tests confirm that "Ca. A. nitratireducens" is metabolically versatile, being able to degrade ethane, propane, and butane under anoxic conditions. Moreover, our study proves nitrate as an additional electron sink for ethane and butane in anaerobic environments, and for the first time demonstrates the use of the fumarate addition pathway in anaerobic ethane oxidation. These findings contribute to our understanding of microbial metabolism of SCGAs in anaerobic environments.


Assuntos
Etano , Nitratos , Etano/metabolismo , Nitratos/metabolismo , Propano/metabolismo , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Oxirredução , Butanos/metabolismo , Gases/metabolismo , Fumaratos/metabolismo
13.
Lancet Respir Med ; 12(5): 355-365, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38309287

RESUMO

BACKGROUND: Penpulimab is a novel programmed death (PD)-1 inhibitor. This study aimed to establish the efficacy and safety of first line penpulimab plus chemotherapy for advanced squamous non-small-cell lung cancer. METHODS: This multicentre, randomised, double-blind, placebo-controlled, phase 3 clinical trial enrolled patients with locally advanced or metastatic squamous non-small-cell lung cancer from 74 hospitals in China. Eligible participants were aged 18-75 years, had histologically or cytologically confirmed locally advanced (stage IIIb or IIIc) or metastatic (stage IV) squamous non-small-cell lung cancer, were ineligible to complete surgical resection and concurrent or sequential chemoradiotherapy, had an Eastern Cooperative Oncology Group (ECOG) performance status of 0-1, did not have previous systemic chemotherapy for locally advanced or metastatic non-small-cell lung cancer, and had one or more measurable lesions according to RECIST (version 1.1). Participants were randomly assigned (1:1) to receive intravenous penpulimab 200 mg or placebo (excipient of penpulimab injection), plus paclitaxel 175 mg/m2 and carboplatin AUC of 5 intravenously on day 1 every 3 weeks for four cycles, followed by penpulimab or placebo as maintenance therapy. Stratification was done according to the PD-L1 tumour proportion score (<1% vs 1-49% vs ≥50%) and sex (male vs female). The participants, investigators, and other research staff were masked to group assignment. The primary outcome was progression-free survival assessed by the masked Independent Radiology Review Committee in the intention-to-treat population and patients with a PD-L1 tumour proportion score of 1% or more (PD-L1-positive subgroup). The primary analysis was based on the intention-to-treat analysis set (ie, all randomly assigned participants) and the PD-L1-positive subgroup. The safety analysis included all participants who received at least one dose of study drug after enrolment. This trial was registered with ClinicalTrials.gov (NCT03866993). FINDINGS: Between Dec 20, 2018, and Oct 10, 2020, 485 patients were screened, and 350 participants were randomly assigned (175 in the penpulimab group and 175 in the placebo group). Of 350 participants, 324 (93%) were male and 26 (7%) were female, and 347 (99%) were of Han ethnicity. In the final analysis (June 1, 2022; median follow-up, 24·7 months [IQR 0-41·4]), the penpulimab group showed an improved progression-free survival compared with the placebo group, both in the intention-to-treat population (median 7·6 months, 95% CI 6·8--9·6 vs 4·2 months, 95% CI 4·2-4·3; HR 0·43, 95% CI 0·33-0·56; p<0·0001) and in the PD-L1-positive subgroup (8·1 months, 5·7-9·7 vs 4·2 months, 4·1-4·3; HR 0·37, 0·27-0·52, p<0·0001). Grade 3 or worse treatment-emergent adverse events occurred in 120 (69%) 173 patients in the penpulimab group and 119 (68%) of 175 in the placebo group. INTERPRETATION: Penpulimab plus chemotherapy significantly improved progression-free survival in patients with advanced squamous non-small-cell lung cancer compared with chemotherapy alone. The treatment was safe and tolerable. Penpulimab combined with paclitaxel and carboplatin is a new option for first-line treatment in patients with this advanced disease. FUNDING: The National Natural Science Foundation of China, Shanghai Municipal Health Commission, Chia Tai Tianqing Pharmaceutical, Akeso.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Carboplatina , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Paclitaxel , Humanos , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Masculino , Pessoa de Meia-Idade , Feminino , Método Duplo-Cego , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Carboplatina/administração & dosagem , Carboplatina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Idoso , China , Adulto , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Resultado do Tratamento , Intervalo Livre de Progressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA