Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(18): e2219034120, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094158

RESUMO

Escape from metastable states in self-assembly of colloids is an intractable problem. Unlike the commonly adopted approach of thermal annealing, the recently developed enthalpy-mediated strategy provided a different option to address this dilemma in a dynamically controllable manner at room temperature. However, it required a complex catalytic-assembly DNA strand-displacement circuitry to mediate interaction between multiple components. In this work, we present a simple but effective way to achieve catalytic-assembly of DNA-functionalized colloidal nanoparticles, i.e., programmable atom equivalents, in a far-from-equilibrium system. A removable molecule named "catassembler" that acts as a catalyst was employed to rectify imperfect linkages and help the system escape from metastability without affecting the assembled framework. Notably, catalytic efficiency of the catassembler can be effectively improved by changing the seesaw catassembler in toehold length design or numbers of the repeat units. Leveraging this tractable catalytic-assembly approach, different ordered architectures were easily produced by directly mixing all reactants, as in chemical reactions. By switching bonding identities, solid-solid phase transformations between different colloidal crystals were achieved. This work opens up an avenue for programming colloid assembly in a far-from-equilibrium system.

2.
Nano Lett ; 23(24): 11540-11547, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085915

RESUMO

Sophisticated dynamic molecular systems with diverse functions have been fabricated by using the fundamental tool of toehold-mediated strand displacement (TMSD) in the field of dynamic DNA nanotechnology. However, simple approaches to reset these TMSD-based dynamic systems are lacking due to the difficulty in creating kinetically favored pathways to implement the backward resetting reactions. Here, we develop a facile proton-driven strategy to achieve complete resetting of a modular DNA circuit by integrating a pH-responsive intermolecular CG-C+ triplex DNA and an i-motif DNA into the conventional DNA substrate. The pH-programmed strategy allows modular DNA components to specifically associate/dissociate to promote the forward/backward TMSD reactions, thereby enabling the modular DNA circuit to be repeatedly operated at a constant temperature without generating any DNA waste products. Leveraging this tractable approach, we further constructed two resettable DNA logic gates used for logical computation and two resettable catalytic DNA systems with good performance in signal transduction and amplification.


Assuntos
DNA Catalítico , DNA , DNA/química , Nanotecnologia , Concentração de Íons de Hidrogênio
3.
Angew Chem Int Ed Engl ; 63(22): e202403492, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38482742

RESUMO

The development of self-replicating systems is of great importance in research on the origin of life. As the most iconic molecules, nucleic acids have provided prominent examples of the fabrication of self-replicating artificial nanostructures. However, it is still challenging to construct sophisticated synthetic systems that can create large-scale or three-dimensionally ordered nanomaterials using self-replicating nanostructures. By integrating a template system containing DNA-functionalized colloidal seeds with a simplified DNA strand-displacement circuit programmed subsystem to produce DNA-functionalized colloidal copies, we developed a facile enthalpy-mediated strategy to control the replication and catalytic assembly of DNA-functionalized colloids in a time-dependent manner. The replication efficiency and crystal quality of the resulting superlattice structures can be effectively increased by regulating the molar ratio of the template to the copy colloids. By constructing binary systems from two types of gold nanoparticles (or proteins), superlattice structures with different crystal symmetries can be obtained through the replication and catalytic assembly processes. This programmable enthalpy-mediated approach was easily leveraged to achieve the phase transformation and catalytic amplification of colloidal crystals starting from different initial template crystals. This work offers a potential way to construct self-replicating artificial systems that exhibit complicated phase behaviors and can produce large-scale superlattice nanomaterials.


Assuntos
Coloides , DNA , Coloides/química , DNA/química , Ouro/química , Cristalização , Nanopartículas Metálicas/química , Termodinâmica , Nanoestruturas/química
4.
Gastroenterology ; 162(1): 179-192.e11, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34425092

RESUMO

BACKGROUND AND AIMS: The enteric nervous system, which regulates many gastrointestinal functions, is derived from neural crest cells (NCCs). Defective NCC migration during embryonic development may lead to enteric neuropathies such as Hirschsprung's disease (hindgut aganglionosis). Sox10 is known to be essential for cell migration but downstream molecular events regulating early NCC migration have not been fully elucidated. This study aimed to determine how Sox10 regulates migration of sacral NCCs toward the hindgut using Dominant megacolon mice, an animal model of Hirschsprung's disease with a Sox10 mutation. METHODS: We used the following: time-lapse live cell imaging to determine the migration defects of mutant sacral NCCs; genome-wide microarrays, site-directed mutagenesis, and whole embryo culture to identify Sox10 targets; and liquid chromatography and tandem mass spectrometry to ascertain downstream effectors of Sox10. RESULTS: Sacral NCCs exhibited retarded migration to the distal hindgut in Sox10-null embryos with simultaneous down-regulated expression of cadherin-19 (Cdh19). Sox10 was found to bind directly to the Cdh19 promoter. Cdh19 knockdown resulted in retarded sacral NCC migration in vitro and ex vivo, whereas re-expression of Cdh19 partially rescued the retarded migration of mutant sacral NCCs in vitro. Cdh19 formed cadherin-catenin complexes, which then bound to filamentous actin of the cytoskeleton during cell migration. CONCLUSIONS: Cdh19 is a direct target of Sox10 during early sacral NCC migration toward the hindgut and forms cadherin-catenin complexes which interact with the cytoskeleton in migrating cells. Elucidation of this novel molecular pathway helps to provide insights into the pathogenesis of enteric nervous system developmental defects.


Assuntos
Caderinas/metabolismo , Movimento Celular , Sistema Nervoso Entérico/metabolismo , Doença de Hirschsprung/metabolismo , Crista Neural/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Fatores de Transcrição SOXE/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Animais , Caderinas/genética , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Cultura Embrionária , Sistema Nervoso Entérico/anormalidades , Regulação da Expressão Gênica no Desenvolvimento , Doença de Hirschsprung/genética , Doença de Hirschsprung/patologia , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Crista Neural/anormalidades , Células-Tronco Neurais/patologia , Ligação Proteica , Fatores de Transcrição SOXE/genética , Transdução de Sinais , Fatores de Tempo
5.
Nanotechnology ; 34(37)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37257445

RESUMO

High orientation consistency and adjustable convex width of the low-spatial-frequency laser-induced periodic surface structures (LSFLs), crucial to the functional surface characteristics, have remained elusive. This paper proposes a new method to fabricate LSFLs with high orientation consistency on the rough surface of titanium by combining laser polishing and laser induction with LSFLs with a tunable convex width via laser melting as the post-treatment. Picosecond pulses trained with a 50-ns interval are applied to regulate the thermal incubation effect and achieve laser polishing and laser nanoscale melting. The melting time of titanium for laser polishing and laser nanoscale melting is determined to be on a microsecond time scale and around 100 ns, respectively. Experimental studies show that the surface texture of titanium lowers the orientation consistency of LSFLs and that its divergence angle is 30°. Picosecond pulses with a sub-pulse number of three are applied to achieve surface polishing and the formation of the rudiment of the LSFLs, followed by the picosecond laser induction. As a result, the divergence angle of LSFLs decreases from 30° to 12°. On this basis, aiming at the problem of the narrow adjustability of the convexity ratio of LSFLs, a nanoscale melting processing method based on picosecond pulse trains with a sub-pulse number of four is proposed, and LSFLs with the tunable convexity ratios from 0.3 to 0.87 are obtained.

6.
J Am Chem Soc ; 144(28): 12690-12697, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35792375

RESUMO

Multi-module dCas9 engineering systems have been developed for controllable transcriptional manipulation such as chemical- or light-induced systems. However, there is still a need for a separate module that can be used for internal control over the CRISPR-dCas9 system. Here, we describe a multi-module CRISPR-dCas9 system in which a separate structured RNA was applied as a programmable component that could control dCas9-based gene regulation and achieved a higher activation efficiency than dCas9-VPR that is traditionally used. By introducing a microRNA sensor, we generated a dCas9-based transcriptional regulation platform that responded to endogenous microRNAs and allowed controllable activation of endogenous genes. Moreover, we applied the platform to selectively identify HCT116 cells in a cell mixture. This work provides a flexible platform for efficient and controllable gene regulation based on CRISPR-dCas9.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas/genética , RNA/genética , Ativação Transcricional
7.
Neurochem Res ; 47(12): 3682-3696, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35951202

RESUMO

Ischemic stroke remains a devastating cerebrovascular disease that accounts for a high proportion of mortality and disability worldwide. MicroRNAs (miRNAs) are a class of small non-coding RNAs that are responsible for regulation of post-transcriptional gene expression, and growing evidence supports a role for miRNAs in stroke injury and recovery. The current study examined the role of miR-182 in experimental stroke using both in vitro and in vivo models of ischemic injury. Brain levels of miR-182 significantly increased after transient middle cerebral artery occlusion (MCAO) in mice and in primary astrocyte cultures subjected to combined oxygen-glucose deprivation/reperfusion (OGD/R) injury. In vivo, stroke volume and neurological score were significantly improved by pre-treatment with miR-182 antagomir. Astrocyte cultures stressed with OGD/R resulted in mitochondrial fragmentation and downregulation of cortactin, an actin-binding protein. Inhibition of miR-182 significantly preserved cortactin expression, reduced mitochondrial fragmentation and improved astrocyte survival after OGD/R. In parallel, lipopolysaccharide (LPS)-induced nitric-oxide release in astrocyte cultures was significantly reduced by miR-182 inhibition, translating to reduced injury in primary neuronal cultures subjected to conditioned medium from LPS-treated astrocytes. These findings identify miR-182 and/or cortactin as potential clinical targets to preserve mitochondrial structure and mitigate neuroinflammation and cell death after ischemic stroke.


Assuntos
Isquemia Encefálica , MicroRNAs , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Camundongos , Apoptose/genética , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Cortactina/metabolismo , Glucose , Inflamação/prevenção & controle , Inflamação/genética , AVC Isquêmico , Lipopolissacarídeos , MicroRNAs/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/prevenção & controle , Acidente Vascular Cerebral/genética
8.
Int J Mol Sci ; 23(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35682541

RESUMO

Germline stem cells (GSCs) are a group of unique adult stem cells in gonads that act as important transmitters for genetic information. Donor GSCs have been used to produce offspring by transplantation in fisheries. In this study, we successfully isolated and enriched GSCs from the ovary, ovotestis, and testis of Monopterus albus, one of the most important breeding freshwater fishes in China. Transcriptome comparison assay suggests that a distinct molecular signature exists in each type of GSC, and that different signaling activities are required for the maintenance of distinct GSCs. Functional analysis shows that fGSCs can successfully colonize and contribute to the germline cell lineage of a host zebrafish gonad after transplantation. Finally, we describe a simple feeder-free method for the isolation and enrichment of GSCs that can contribute to the germline cell lineage of zebrafish embryos and generate the germline chimeras after transplantation.


Assuntos
Células-Tronco Adultas , Peixe-Zebra , Animais , Feminino , Células Germinativas , Gônadas , Masculino , Processos de Determinação Sexual , Peixe-Zebra/genética
9.
J Neuroinflammation ; 17(1): 23, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31948437

RESUMO

BACKGROUND: Postoperative cognitive decline (POCD) is a recognized clinical phenomenon characterized by cognitive impairments in patients following anesthesia and surgery, yet its underlying mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal plasticity, learning, and memory via activation of TrkB-full length (TrkB-FL) receptors. It has been reported that an abnormal truncation of TrkB mediated by calpain results in dysregulation of BDNF/TrkB signaling and is associated with cognitive impairments in several neurodegenerative disorders. Calpains are Ca2+-dependent proteases, and overactivation of calpain is linked to neuronal death. Since one source of intracellular Ca2+ is N-methyl-d-aspartate receptors (NMDARs) related and the function of NMDARs can be regulated by neuroinflammation, we therefore hypothesized that dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca2+/calpain might be involved in the pathogenesis of POCD. METHODS: In the present study, 16-month-old C57BL/6 mice were subjected to exploratory laparotomy with isoflurane anesthesia to establish the POCD animal model. For the interventional study, mice were treated with either NMDAR antagonist memantine or calpain inhibitor MDL-28170. Behavioral tests were performed by open field, Y maze, and fear conditioning tests from 5 to 8 days post-surgery. The levels of Iba-1, GFAP, interleukin-1ß (IL-1ß), IL-6, tumor necrosis factor-α (TNF-α), NMDARs, calpain, BDNF, TrkB, bax, bcl-2, caspase-3, and dendritic spine density were determined in the hippocampus. RESULTS: Anesthesia and surgery-induced neuroinflammation overactivated NMDARs and then triggered overactivation of calpain, which subsequently led to the truncation of TrkB-FL, BDNF/TrkB signaling dysregulation, dendritic spine loss, and cell apoptosis, contributing to cognitive impairments in aging mice. These abnormities were prevented by memantine or MDL-28170 treatment. CONCLUSION: Collectively, our study supports the notion that NMDAR/Ca2+/calpain is mechanistically involved in anesthesia and surgery-induced BDNF/TrkB signaling disruption and cognitive impairments in aging mice, which provides one possible therapeutic target for POCD.


Assuntos
Envelhecimento/metabolismo , Complicações Cognitivas Pós-Operatórias/metabolismo , Transdução de Sinais/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cálcio/metabolismo , Calpaína/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Tirosina Quinases/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
10.
J Neurosci ; 37(11): 3072-3084, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28188219

RESUMO

Neurogenesis is essential to brain development and plays a central role in the response to brain injury. Stroke and head trauma stimulate proliferation of endogenous neural stem cells (NSCs); however, the survival of young neurons is sharply reduced by postinjury inflammation. Cellular mitochondria are critical to successful neurogenesis and are a major target of inflammatory injury. Mitochondrial protection was shown to improve survival of young neurons. This study tested whether reducing cellular microRNA-210 (miR-210) would enhance mitochondrial function and improve survival of young murine neurons under inflammatory conditions. Several studies have demonstrated the potential of miR-210 inhibition to enhance and protect mitochondrial function through upregulation of mitochondrial proteins. Here, miR-210 inhibition significantly increased neuronal survival and protected the activity of mitochondrial enzymes cytochrome c oxidase and aconitase in differentiating NSC cultures exposed to inflammatory mediators. Unexpectedly, we found that reducing miR-210 significantly attenuated NSC proliferation upon induction of differentiation. Further investigation revealed that increased mitochondrial function suppressed the shift to primarily glycolytic metabolism and reduced mitochondrial length characteristic of dividing cells. Activation of AMP-regulated protein kinase-retinoblastoma signaling is important in NSC proliferation and the reduction of this activation observed by miR-210 inhibition is one mechanism contributing to the reduced proliferation. Postinjury neurogenesis occurs as a burst of proliferation that peaks in days, followed by migration and differentiation over weeks. Our studies suggest that mitochondrial protective miR-210 inhibition should be delayed until after the initial burst of proliferation, but could be beneficial during the prolonged differentiation stage.SIGNIFICANCE STATEMENT Increasing the success of endogenous neurogenesis after brain injury holds therapeutic promise. Postinjury inflammation markedly reduces newborn neuron survival. This study found that enhancement of mitochondrial function by reducing microRNA-210 (miR-210) levels could improve survival of young neurons under inflammatory conditions. miR-210 inhibition protected the activity of mitochondrial enzymes cytochrome c oxidase and aconitase. Conversely, we observed decreased precursor cell proliferation likely due to suppression of the AMP-regulated protein kinase-retinoblastoma axis with miR-210 inhibition. Therefore, mitochondrial protection is a double-edged sword: early inhibition reduces proliferation, but inhibition later significantly increases neuroblast survival. This explains in part the contradictory published reports of the effects of miR-210 on neurogenesis.


Assuntos
Proliferação de Células , Sobrevivência Celular/imunologia , Encefalite/imunologia , MicroRNAs/imunologia , Mitocôndrias/imunologia , Neurogênese/imunologia , Neurônios/imunologia , Animais , Citocinas/imunologia , Encefalite/patologia , Feminino , Inflamação/imunologia , Inflamação/patologia , Masculino , Camundongos , Mitocôndrias/patologia , Neurônios/patologia
11.
Mol Cell Neurosci ; 82: 118-125, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28522364

RESUMO

Whether the effect of miR-181a is sexually dimorphic in stroke is unknown. Prior work showed protection of male mice with miR-181a inhibition. Estrogen receptor-α (ERα) is an identified target of miR181 in endometrium. Therefore we investigated the separate and joint effects of miR-181a inhibition and 17ß-estradiol (E2) replacement after ovariectomy. Adult female mice were ovariectomized and implanted with an E2- or vehicle-containing capsule for 14d prior to 1h middle cerebral artery occlusion (MCAO). Each group received either miR-181a antagomir or mismatch control by intracerebroventricular injection 24h before MCAO. After MCAO neurologic deficit and infarct volume were assessed. Primary male and female astrocyte cultures were subjected to glucose deprivation with miR-181a inhibitor or transfection control, and E2 or vehicle control, with/without ESRα knockdown with small interfering RNA. Cell death was assessed by propidium iodide staining, and lactate dehydrogenase assay. A miR-181a/ERα target site blocker (TSB), with/without miR-181a mimic, was used to confirm targeting of ERα by miR-181a in astrocytes. Individually, miR-181a inhibition or E2 decreased infarct volume and improved neurologic score in female mice, and protected male and female astrocyte cultures. Combined miR-181a inhibition plus E2 afforded greater protection of female mice and female astrocyte cultures, but not in male astrocyte cultures. MiR-181a inhibition only increased ERα levels in vivo and in female cultures, while ERα knockdown with siRNA increased cell death in both sexes. Treatment with ERα TSB was strongly protective in both sexes. In conclusion, the results of the present study suggest miR-181a inhibition enhances E2-mediated stroke protection in females in part by augmenting ERα production, a mechanism detected in female mice and female astrocytes. Sex differences were observed with combined miR-181a inhibition/E2 treatment, and miR-181a targeting of ERα.


Assuntos
Astrócitos/metabolismo , Isquemia Encefálica/genética , Receptor alfa de Estrogênio/genética , Ataque Isquêmico Transitório/metabolismo , MicroRNAs/genética , Animais , Astrócitos/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Feminino , Ataque Isquêmico Transitório/genética , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Fatores Sexuais
12.
Hepatology ; 63(6): 1943-56, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26857093

RESUMO

UNLABELLED: Using publicly available data from inbred mouse strains, we conducted a genome-wide association study to identify loci that accounted for liver-related phenotypes between C57BL/6J and A/J mice fed a Paigen diet. We confirmed genome-wide significant associations for hepatic cholesterol (chromosome 10A2) and serum total bile acid concentration (chromosome 12E) and identified a new locus for liver inflammation (chromosome 7C). Analysis of consomic mice confirmed that chromosome 12 A/J alleles accounted for the variance in serum total bile acid concentrations and had pleiotropic effects on liver mass, serum cholesterol, and serum alanine aminotransferase activity. Using an affected-only haplotype analysis among strains, we refined the chromosome 12E signal to a 1.95 Mb linkage disequilibrium block containing only one gene, sel-1 suppressor of lin-12-like (Sel1l). RNA sequencing and immunoblotting demonstrated that the risk allele locally conferred reduced expression of SEL1L in liver and distantly down-regulated pathways associated with hepatocyte nuclear factor 1 homeobox A (Hnf1a) and hepatocyte nuclear factor 4A (Hnf4a), known modifiers of bile acid transporters and metabolic traits. Consistent with these data, knockdown of SEL1L in HepG2 cells resulted in reduced HNF1A and HNF4A and increased bile acids in culture media; it further captured multiple molecular signatures observed in consomic mouse livers with reduced SEL1L. Finally, dogs harboring a SEL1L mutation and Sel1l(+/-) mice fed a Paigen diet had significantly increased serum total bile acid concentrations, providing independent confirmation linking SEL1L to bile acid metabolism. CONCLUSION: Genetic analyses of inbred mouse strains identified loci affecting different liver-related traits and implicated Sel1l as a significant determinant of serum bile acid concentration. (Hepatology 2016;63:1943-1956).


Assuntos
Ácidos e Sais Biliares/sangue , Fígado/fisiologia , Proteínas/genética , Animais , Cães , Fígado Gorduroso/genética , Pleiotropia Genética , Estudo de Associação Genômica Ampla , Haplótipos , Células Hep G2 , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo
13.
AIDS Care ; 29(5): 644-653, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27832699

RESUMO

Global literature revealed that seropositive men who have sex with men (MSM) posed an even higher risk compared to their seronegative counterparts. Identifying risk factors that contribute to HIV-risk behaviors will help to curb the rapid HIV transmission among this group. Our hypothesis was that MSM with substance use were more likely to conduct HIV-risk behaviors, even after accounting for repeated measures. In the current study, we employed a cohort study design by following a group of 367 HIV-positive MSM up to four visits for one year to collect information regarding their sexual behaviors and history of substance use in the past three months. We used Generalized Estimating Equations (GEE) models to account both within- and between-subject variation when assessing associations between substance use and HIV-risk behaviors. A total of 367 MSM were included at the baseline with a mean age of 29.6 years. After accounting for potential confounders and time-varying effects, our models indicated that drug and alcohol use increase HIV risks at the population level by increasing risks of drinking alcohol before sex, having unprotected sex with men and seropositive partners, having more lifetime female sex partners and having a higher number of male sexual partners in the past three months. The current study is one of the first studies with repeated measures to evaluate the association between substance use and sexual risk behaviors among MSM in China. Findings in the current study have several implications for future research. We call for more rigorous study design for future research to better capture changes of risky behaviors among this at-risk population.


Assuntos
Soropositividade para HIV/psicologia , Assunção de Riscos , Transtornos Relacionados ao Uso de Substâncias/psicologia , Sexo sem Proteção , Adulto , Consumo de Bebidas Alcoólicas/psicologia , China , Estudos de Coortes , Feminino , Soropositividade para HIV/transmissão , Homossexualidade Masculina , Humanos , Masculino , Projetos de Pesquisa , Fatores de Risco , Parceiros Sexuais , Inquéritos e Questionários , Adulto Jovem
14.
Exp Dermatol ; 25(9): 708-13, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27119462

RESUMO

Solar ultraviolet radiation (UVR) is the major risk factor for skin carcinogenesis. To gain new insights into the molecular pathways mediating UVR effects in the skin, we performed comprehensive transcriptomic analyses to identify shared and distinctive molecular responses to UVR between human keratinocytes and melanocytes. Keratinocytes and melanocytes were irradiated with varying doses of UVB (10, 20 and 30 mJ/cm(2) ) then analysed by RNA-Seq at different time points post-UVB radiation (4, 24 and 72 h). Under basal conditions, keratinocytes and melanocytes expressed similar number of genes, although they each expressed a distinctive subset of genes pertaining to their specific cellular identity. Upon UVB radiation, keratinocytes displayed a clear pattern of time- and dose-dependent changes in gene expression that was different from melanocytes. The early UVB-responsive gene set (4 h post-UVR) differed significantly from delayed UVB-responsive gene sets (24 and 72 h). We also identified multiple novel UVB signature genes including PRSS23, SERPINH1, LCE3D and CNFN, which were conserved between melanocyte and keratinocyte lines from different individuals. Taken together, our findings elucidated both common and distinctive molecular features between melanocytes and keratinocytes and uncovered novel UVB signature genes that might be utilized to predict UVB photobiological effects on the skin.


Assuntos
Queratinócitos/efeitos da radiação , Melanócitos/efeitos da radiação , Sobrevivência Celular , Humanos , Queratinócitos/metabolismo , Melanócitos/metabolismo , Cultura Primária de Células , Transcriptoma , Raios Ultravioleta
15.
Proc Natl Acad Sci U S A ; 110(19): 7790-5, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23603273

RESUMO

X-linked congenital generalized hypertrichosis (Online Mendelian Inheritance in Man 307150) is an extremely rare condition of hair overgrowth on different body sites. We previously reported linkage in a large Mexican family with X-linked congenital generalized hypertrichosis cosegregating with deafness and with dental and palate anomalies to Xq24-27. Using SNP oligonucleotide microarray analysis and whole-genome sequencing, we identified a 389-kb interchromosomal insertion at an extragenic palindrome site at Xq27.1 that completely cosegregates with the disease. Among the genes surrounding the insertion, we found that Fibroblast Growth Factor 13 (FGF13) mRNA levels were significantly reduced in affected individuals, and immunofluorescence staining revealed a striking decrease in FGF13 localization throughout the outer root sheath of affected hair follicles. Taken together, our findings suggest a role for FGF13 in hair follicle growth and in the hair cycle.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/fisiologia , Regulação da Expressão Gênica , Hipertricose/congênito , Processamento Alternativo , Animais , Mapeamento Cromossômico , Feminino , Ligação Genética , Genoma Humano , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/fisiologia , Heterozigoto , Humanos , Hipertricose/genética , Queratinócitos/metabolismo , Masculino , Camundongos , Mutagênese Insercional , Linhagem , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo , Análise de Sequência de DNA
16.
Stroke ; 46(2): 551-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25604249

RESUMO

BACKGROUND AND PURPOSE: MicroRNA (miR)-200c increases rapidly in the brain after transient cerebral ischemia but its role in poststroke brain injury is unclear. Reelin, a regulator of neuronal migration and synaptogenesis, is a predicted target of miR-200c. We hypothesized that miR-200c contributes to injury from transient cerebral ischemia by targeting reelin. METHODS: Brain infarct volume, neurological score and levels of miR-200c, reelin mRNA, and reelin protein were assessed in mice subjected to 1 hour of middle cerebral artery occlusion with or without intracerebroventricular infusion of miR-200c antagomir, mimic, or mismatch control. Direct targeting of reelin by miR-200c was assessed in vitro by dual luciferase assay and immunoblot. RESULTS: Pretreatment with miR-200c antagomir decreased post-middle cerebral artery occlusion brain levels of miR-200c, resulting in a significant reduction in infarct volume and neurological deficit. Changes in brain levels of miR-200c inversely correlated with reelin protein expression. Direct targeting of the Reln 3' untranslated region by miR-200c was verified with dual luciferase assay. Inhibition of miR-200c resulted in an increase in cell survival subsequent to in vitro oxidative injury. This effect was blocked by knockdown of reelin mRNA, whereas application of reelin protein afforded protection. CONCLUSIONS: These findings suggest that the poststroke increase in miR-200c contributes to brain cell death by inhibiting reelin expression, and that reducing poststroke miR-200c is a potential target to mitigate stroke-induced brain injury.


Assuntos
Isquemia Encefálica/metabolismo , Moléculas de Adesão Celular Neuronais/biossíntese , Proteínas da Matriz Extracelular/biossíntese , MicroRNAs/administração & dosagem , MicroRNAs/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Serina Endopeptidases/biossíntese , Animais , Isquemia Encefálica/patologia , Moléculas de Adesão Celular Neuronais/antagonistas & inibidores , Células Cultivadas , Proteínas da Matriz Extracelular/antagonistas & inibidores , Marcação de Genes , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteína Reelina
17.
Cell Physiol Biochem ; 35(5): 1787-96, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25832861

RESUMO

BACKGROUND/AIMS: Age-related macular degeneration (AMD) appears to be a disease with increasing incidence in Western countries and may develop into acquired blindness. Choroidal neovascularization (CNV) is the most frequent cause for AMD, and is commonly induced by regional inflammation. Past studies have highlighted vascular endothelial growth factor A (VEGF-A) as a major trigger for CNV. However, studies on the associated angiogenic factors other than VEGF-A are lacking. METHODS: Here, we used a well-established laser burn (LB)-induced experimental CNV mouse model to study the molecular mechanisms underlying the development of CNV after ocular injury. We analyzed vessel density by lectin labeling. We isolated macrophages, endothelial cells and other cell types by flow cytometry, and analyzed levels of different angiogenic factors in these populations. We used antisera against VEGF-A (aVEGF) and/or antisera against placental growth factor (PLGF; aPLGF) to antagonize CNV. We used an antibody-driven toxin to selectively eliminate macrophages to evaluate the role of macrophages in CNV. We also examined expression of PLGF in macrophage subtypes. RESULTS: The choroidal vessel density increased significantly 7 days after LB. LB increased significantly the levels of VEGF-A and PLGF in mouse eyes. Treatment with aVEGF significantly blunted increases in vessel density by LB. Treatment with aPLGF alone did not significantly reduce increases in vessel density. However, aPLGF significantly increased the inhibitory effects of aVEGF on vessel density increases. While VEGF-A was produced by endothelial cells, macrophages and other types at similar levels, PLGF seemed to be predominantly produced by macrophages. Selective macrophage depletion significantly reduced CNV. M2, but M1 macrophages produced high levels of PLGF. CONCLUSIONS: Together, our data suggest a previously unappreciated role of PLGF in coordination with VEGF-A to regulate CNV during ocular injury. Our study highlights macrophages and their production of PLGF as novel targets for CNV therapy.


Assuntos
Proteínas da Gravidez/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Neovascularização de Coroide/etiologia , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Olho/metabolismo , Olho/efeitos da radiação , Feminino , Lasers , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica , Fator de Crescimento Placentário , Proteínas da Gravidez/genética , Fator A de Crescimento do Endotélio Vascular/genética
18.
J Neurosci Res ; 93(11): 1703-12, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26147710

RESUMO

Recent studies have demonstrated that neural stem cell (NSC) culture at physiologically normoxic conditions (2-5% O2) is advantageous in terms of neuronal differentiation and survival. Neuronal differentiation is accompanied by a remarkable shift to mitochondrial oxidative metabolism compared with preferentially glycolytic metabolism of proliferating cells. However, metabolic changes induced by growth in a normoxic (5%) O2 culture environment in NSCs have been minimally explored. This study demonstrates that culturing under 5% O2 conditions results in higher levels of mitochondrial oxidative metabolism, decreased glycolysis, and reduced levels of reactive oxygen species in NSC cultures. Inflammation is one of the major environmental factors limiting postinjury NSC neuronal differentiation and survival. Our results show that NSCs differentiated under 5% O2 conditions possess better resistance to in vitro inflammatory injury compared with those exposed to 20% O2. The present work demonstrates that lower, more physiologically normal O2 levels support metabolic changes induced during NSC neuronal differentiation and provide increased resistance to inflammatory injury, thus highlighting O2 tension as an important determinant of cell fate and survival in various stem cell therapies.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Oxigênio/farmacologia , Animais , Apoptose/fisiologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Inflamação/metabolismo , Camundongos
19.
Anesthesiology ; 123(4): 810-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26270940

RESUMO

BACKGROUND: Isoflurane induces cell death in neurons undergoing synaptogenesis via increased production of pro-brain-derived neurotrophic factor (proBDNF) and activation of postsynaptic p75 neurotrophin receptor (p75). Astrocytes express p75, but their role in neuronal p75-mediated cell death remains unclear. The authors investigated whether astrocytes have the capacity to buffer increases in proBDNF and protect against isoflurane/p75 neurotoxicity. METHODS: Cell death was assessed in day in vitro (DIV) 7 mouse primary neuronal cultures alone or in co-culture with age-matched or DIV 21 astrocytes with propidium iodide 24 h after 1 h exposure to 2% isoflurane or recombinant proBDNF. Astrocyte-targeted knockdown of p75 in co-culture was achieved with small-interfering RNA and astrocyte-specific transfection reagent and verified with immunofluorescence microscopy. proBDNF levels were assessed by enzyme-linked immunosorbent assay. Each experiment used six to eight replicate cultures/condition and was repeated at least three times. RESULTS: Exposure to isoflurane significantly (P < 0.05) increased neuronal cell death in primary neuronal cultures (1.5 ± 0.7 fold, mean ± SD) but not in co-culture with DIV 7 (1.0 ± 0.5 fold) or DIV 21 astrocytes (1.2 ± 1.2 fold). Exogenous proBDNF dose dependently induced neuronal cell death in both primary neuronal and co-cultures, an effect enhanced by astrocyte p75 inhibition. Astrocyte-targeted p75 knockdown in co-cultures increased media proBDNF (1.2 ± 0.1 fold) and augmented isoflurane-induced neuronal cell death (3.8 ± 3.1 fold). CONCLUSIONS: The presence of astrocytes provides protection to growing neurons by buffering increased levels of proBDNF induced by isoflurane. These findings may hold clinical significance for the neonatal and injured brain where increased levels of proBDNF impair neurogenesis.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Isoflurano/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Precursores de Proteínas/biossíntese , Animais , Astrócitos/patologia , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Células Cultivadas , Técnicas de Cocultura , Camundongos , Neurônios/patologia , Precursores de Proteínas/antagonistas & inibidores
20.
PLoS Comput Biol ; 10(2): e1003471, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516376

RESUMO

Overexpression of the inducible heat shock protein 70, Hsp72, has broadly cytoprotective effects and improves outcome following stroke. A full understanding of how Hsp72 protects cells against injury is elusive, though several distinct mechanisms are implicated. One mechanism is its anti-inflammatory effects. We study the effects of Hsp72 overexpression on activation of the transcription factor NF-κB in microglia combining experimentation and mathematical modeling, using TNFα to stimulate a microglial cell line stably overexpressing Hsp72. We find that Hsp72 overexpression reduces the amount of NF-κB DNA binding activity, activity of the upstream kinase IKK, and amount of IκBα inhibitor phosphorylated following TNFα application. Simulations evaluating several proposed mechanisms suggest that inhibition of IKK activation is an essential component of its regulatory activities. Unexpectedly we find that Hsp72 overexpression reduces the initial amount of the RelA/p65 NF-κB subunit in cells, contributing to the attenuated response. Neither mechanism in isolation, however, is sufficient to attenuate the response, providing evidence that Hsp72 relies upon multiple mechanisms to attenuate NF-κB activation. An additional observation from our study is that the induced expression of IκBα is altered significantly in Hsp72 expressing cells. While the mechanism responsible for this observation is not known, it points to yet another means by which Hsp72 may alter the NF-κB response. This study illustrates the multi-faceted nature of Hsp72 regulation of NF-κB activation in microglia and offers further clues to a novel mechanism by which Hsp72 may protect cells against injury.


Assuntos
Proteínas de Choque Térmico HSP72/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo , Animais , Linhagem Celular , Biologia Computacional , DNA/metabolismo , Proteínas de Choque Térmico HSP72/genética , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Conceitos Matemáticos , Camundongos , Modelos Neurológicos , Inibidor de NF-kappaB alfa , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA