Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 35(5): e21581, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33871072

RESUMO

Synaptic plasticity damages play a crucial role in the onset and development of depression, especially in the hippocampus, which is more susceptible to stress and the most frequently studied brain region in depression. And, mitochondria have a major function in executing the complex processes of neurotransmission and plasticity. We have previously demonstrated that Iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could improve the depressive-like behavior in mice. But the underlying mechanisms are not well understood. The present study demonstrated that Ipt reversed depressive-like phenotype in vivo (chronic mild stress-induced mice model of depression) and in vitro (corticosterone-induced cellular model). Further study showed that Ipt could upregulate the synaptic-related proteins postsynaptic density 95 (PSD 95) and synaptophysin (SYN), and alleviated the synaptic structure damage. Moreover, Ipt could reverse the abnormal mitochondrial fission and fusion, as well as the reduced mitochondrial ATP production and collapse of mitochondrial membrane potential in depressive models. Knocking down the mitochondrial ATP-sensitive potassium (Mito-KATP) channel subunit MitoK partly blocked the above effects of Ipt. Therefore, our results reveal that Ipt can alleviate the abnormal mitochondrial dynamics and function depending on MitoK, contributing to improve synaptic plasticity and exert antidepressive effects. These findings provide a candidate compound and a novel target for antidepressive therapy.


Assuntos
Depressão/tratamento farmacológico , Canais KATP/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Propilaminas/farmacologia , Estresse Psicológico/complicações , Sinapses/efeitos dos fármacos , Animais , Depressão/etiologia , Depressão/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Plasticidade Neuronal , Sinapses/metabolismo
2.
Acta Pharmacol Sin ; 43(6): 1349-1359, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34697419

RESUMO

Pericytes are present tight around the intervals of capillaries, play an essential role in stabilizing the blood-brain barrier, regulating blood flow and immunomodulation, and persistent contraction of pericytes eventually leads to impaired blood flow and poor clinical outcomes in ischemic stroke. We previously show that iptakalim, an ATP-sensitive potassium (K-ATP) channel opener, exerts protective effects in neurons, and glia against ischemia-induced injury. In this study we investigated the impacts of iptakalim on pericytes contraction in stroke. Mice were subjected to cerebral artery occlusion (MCAO), then administered iptakalim (10 mg/kg, ip). We showed that iptakalim administration significantly promoted recovery of cerebral blood flow after cerebral ischemia and reperfusion. Furthermore, we found that iptakalim significantly inhibited pericytes contraction, decreased the number of obstructed capillaries, and improved cerebral microcirculation. Using a collagen gel contraction assay, we demonstrated that cultured pericytes subjected to oxygen-glucose deprivation (OGD) consistently contracted from 3 h till 24 h during reoxygenation, whereas iptakalim treatment (10 µM) notably restrained pericyte contraction from 6 h during reoxygenation. We further showed that iptakalim treatment promoted K-ATP channel opening via suppressing SUR2/EPAC1 complex formation. Consequently, it reduced calcium influx and ET-1 release. Taken together, our results demonstrate that iptakalim, targeted K-ATP channels, can improve microvascular disturbance by inhibiting pericyte contraction after ischemic stroke. Our work reveals that iptakalim might be developed as a promising pericyte regulator for treatment of stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Trifosfato de Adenosina , Animais , Camundongos , Microcirculação , Pericitos , Propilaminas , Acidente Vascular Cerebral/tratamento farmacológico
3.
J Cell Mol Med ; 25(20): 9753-9766, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34514714

RESUMO

Oridonin, a natural diterpenoid compound extracted from a Chinese herb, has been proved to exert anti-oxidative stress effects in various disease models. The aim of the present study was to investigate the protective effects of oridonin on oxidative stress-induced endothelial injury in ischaemic stroke. We found oridonin repaired blood-brain barrier (BBB) integrity presented with upregulation of tight junction proteins (TJ proteins) expression, inhibited the infiltration of periphery inflammatory cells and neuroinflammation and thereby reduced infarct volume in ischaemic stroke mice. Furthermore, our results showed that oridonin could protect against oxidative stress-induced endothelial injury via promoting nuclear translocation of nuclear factor-erythroid 2 related factor 2 (Nrf-2). The specific mechanism could be the activation of AKT(Ser473)/GSK3ß(Ser9)/Fyn signalling pathway. Our findings revealed the therapeutic effect and mechanism of oridonin in ischaemic stroke, which provided fundamental evidence for developing the extracted compound of Chinese herbal medicine into an innovative drug for ischaemic stroke treatment.


Assuntos
Diterpenos do Tipo Caurano/farmacologia , Endotélio/metabolismo , AVC Isquêmico/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Biomarcadores , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Endotélio/efeitos dos fármacos , Endotélio/patologia , Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Imuno-Histoquímica , AVC Isquêmico/etiologia , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
IUBMB Life ; 71(11): 1785-1793, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31329361

RESUMO

This study aimed to explore the biological role and molecular mechanism of long noncoding RNA (lncRNA) rhabdomyosarcoma 2-associated transcript (RMST) in regulating microglial activation. Mouse microglial BV2 cells were cultured to establish the cell model of cerebral ischemic stroke by oxygen-glucose deprivation (OGD). We observed highly expressed RMST, increased expression of M1, and decreased expression of M2 markers in BV2 microglial cells stimulated with OGD. These alterations were reversed by RMST knockdown. Activation of transforming growth factor-beta-activated kinase 1 (TAK1)-mediated nuclear factor-κB (NF-κB) pathway was observed upon OGD stimulation, which was promoted by RMST through competitively binding with heterogeneous nuclear ribonucleoprotein K (hnRNPK), confirmed by RNA pull down and RNA immunoprecipitation (RIP) assays. Furthermore, RMST overexpressing-BV2 cells effectively enhanced neuronal apoptosis. In conclusion, RMST promoted OGD-induced microglial M1 polarization by competitively interacting with hnRNPK via TAK1-mediated NF-κB pathway, which will provide a basis for understanding the pathogenesis of cerebrovascular diseases.


Assuntos
Glucose/deficiência , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Microglia/patologia , NF-kappa B/metabolismo , Oxigênio/metabolismo , RNA Longo não Codificante/genética , Animais , Apoptose , Células Cultivadas , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , MAP Quinase Quinase Quinases/genética , Camundongos , Microglia/metabolismo , NF-kappa B/genética , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais
5.
J Cell Mol Med ; 22(6): 3159-3166, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29536648

RESUMO

Fingolimod (FTY720) is used as an immunosuppressant for multiple sclerosis. Numerous studies indicated its neuroprotective effects in stroke. However, the mechanism remains to be elucidated. This study was intended to investigate the mechanisms of phosphorylated FTY720 (pFTY720), which was the principle active molecule in regulating astrocyte-mediated inflammatory responses induced by oxygen-glucose deprivation (OGD). Results demonstrated that pFTY720 could protect astrocytes against OGD-induced injury and inflammatory responses. It significantly decreased pro-inflammatory cytokines, including high mobility group box 1 (HMGB1) and tumour necrosis factor-α (TNF-α). Further, studies displayed that pFTY720 could prevent up-regulation of Toll-like receptor 2 (TLR2), phosphorylation of phosphoinositide 3-kinase (PI3K) and nuclear translocation of nuclear factor kappa B (NFκB) p65 subunit caused by OGD. Sphingosine-1-phosphate receptor 3 (S1PR3) knockdown could reverse the above change. Moreover, administration of TLR2/4 blocker abolished the protective effects of pFTY720. Taken together, this study reveals that pFTY720 depends on S1PR3 to protect astrocytes against OGD-induced neuroinflammation, due to inhibiting TLR2/4-PI3K-NFκB signalling pathway.


Assuntos
Cloridrato de Fingolimode/farmacologia , Inflamação/tratamento farmacológico , Receptores de Lisoesfingolipídeo/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Animais , Astrócitos/efeitos dos fármacos , Carência Cultural , Citocinas/genética , Modelos Animais de Doenças , Cloridrato de Fingolimode/química , Proteína HMGB1/genética , Humanos , Imunossupressores/química , Imunossupressores/farmacologia , Inflamação/genética , Inflamação/patologia , NF-kappa B/genética , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Cultura Primária de Células , Ratos , Receptores de Lisoesfingolipídeo/química , Transdução de Sinais/efeitos dos fármacos , Receptores de Esfingosina-1-Fosfato , Fator de Necrose Tumoral alfa/genética
6.
J Pharmacol Sci ; 135(3): 105-113, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29113791

RESUMO

Therapeutic hypothermia is a promising strategy for acute cerebral ischemia via physical or pharmacological methods. In this study, we pharmacologically induced hypothermia on Sprague Dawley rats by intraperitoneally injecting PD149163. We found that mild hypothermia was induced by PD149163 treatment without local cerebral blood flow (LCBF) alteration. To evaluate the neuroprotective effects of PD149163, TTC staining, HE staining and Nissl's staining were performed in our study. We found that PD149163 could prevent neuronal damage, and inhibit proliferation and activation of glial cells induced by ischemia. Simultaneously, we observed PD149163 ameliorated apoptosis characterized by down-regulated caspase-3 and Bax, but elevated Bcl-2. Moreover, PD149163 dramatically reduced JNK and AMPK/mTOR signaling pathway activation, and thereby inhibited autophagy by increased P62 expression, decreased the ratio of LC3-Ⅱ to LC3-Ⅰ and the expression of Beclin. Taken together, the present findings reveal the therapeutic effects of PD149163-induced hypothermia in brain ischemia, and provide a new strategy for stroke treatment.


Assuntos
Isquemia Encefálica/complicações , Hipotermia Induzida , Hipóxia Encefálica/etiologia , Hipóxia Encefálica/prevenção & controle , Fármacos Neuroprotetores , Oligopeptídeos/administração & dosagem , Oligopeptídeos/farmacologia , Doença Aguda , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/genética , Proliferação de Células/efeitos dos fármacos , Injeções Intraperitoneais , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Neuroglia/citologia , Ratos Sprague-Dawley
7.
J Neuroinflammation ; 13(1): 60, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26961366

RESUMO

BACKGROUND: It is generally recognized that the inflammatory reaction in glia is one of the important pathological factors in brain ischemic injury. Our previous study has revealed that opening ATP-sensitive potassium (K-ATP) channels could attenuate glial inflammation induced by ischemic stroke. However, the detailed mechanisms are not well known. METHODS: Primary cultured astrocytes separated from C57BL/6 mice were subjected to oxygen-glucose deprivation (OGD); cellular injuries were determined via observing the changes of cellular morphology and cell viability. MicroRNA (miR) and messenger RNA (mRNA) level was validated by real-time PCR. The interaction between microRNA and the target was confirmed via dual luciferase reporter gene assay. Expressions of proteins and inflammatory cytokines were respectively assessed by western blotting and enzyme-linked immunosorbent assay. RESULTS: OGD resulted in astrocytic damage, which was prevented by K-ATP channel opener nicorandil. Notably, we found that OGD significantly downregulated miR-7 and upregulated Herpud2. Our further study proved that miR-7 targeted Herpud2 3'UTR, which encoded endoplasmic reticulum (ER) stress protein-HERP2. Correspondingly, our results showed that OGD increased the levels of ER stress proteins along with significant elevations of pro-inflammatory cytokines, including tumor necrosis factor α (TNF-α) and interleukin 1ß (IL-1ß). Pretreatment with nicorandil could remarkably upregulate miR-7, depress the ER-related protein expressions including glucose-regulated protein 78 (GRP78), C/EBP-homologous protein (CHOP), and Caspase-12, and thereby attenuate inflammatory responses and astrocytic damages. CONCLUSIONS: These findings demonstrate that opening K-ATP channels protects astrocytes against OGD-mediated neuroinflammation. Potentially, miR-7-targeted ER stress acts as a key molecular brake on neuroinflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Astrócitos/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Glucose/deficiência , Inflamação/tratamento farmacológico , MicroRNAs/fisiologia , Nicorandil/farmacologia , Canais de Potássio/agonistas , Animais , Astrócitos/ultraestrutura , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sobrevivência Celular , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/efeitos dos fármacos , Cultura Primária de Células , Proteínas Repressoras/metabolismo
8.
J Cell Mol Med ; 19(8): 1949-55, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25858687

RESUMO

Paclitaxel is generally used to treat cancers in clinic as an inhibitor of cell division. However, the acquired resistance in tumours limits its clinical efficacy. Therefore, the aim of this study was to detect whether co-treatment with lentinan enhanced the anti-cancer effects of paclitaxel in A549 cells. We found that the combination of paclitaxel and lentinan resulted in a significantly stronger inhibition on A549 cell proliferation than paclitaxel treatment alone. Co-treatment with paclitaxel and lentinan enhanced cell apoptosis rate by inducing caspase-3 activation. Furthermore, co-treatment with paclitaxel and lentinan significantly triggered reactive oxygen species (ROS) production, and increased thioredoxin-interacting protein (TXNIP) expression. Moreover, co-treatment with paclitaxel and lentinan enhanced TXNIP-NLRP3 interaction, and activated NLRP3 inflammasome whereat interleukin-1ß levels were increased and cell apoptosis was induced. In addition, combination of paclitaxel and lentinan could activate apoptosis signal regulating kinase-1 (ASK1)/p38 mitogen-activated protein kinase (MAPK) signal which also contributed to cell apoptosis. Taken together, co-treatment with paclitaxel and lentinan exerts synergistic apoptotic effects in A549 cells through inducing ROS production, and activating NLRP3 inflammasome and ASK1/p38 MAPK signal pathway.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Inflamassomos/metabolismo , Lentinano/farmacologia , Paclitaxel/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Humanos , MAP Quinase Quinase Quinase 5 , Modelos Biológicos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Clin Exp Pharmacol Physiol ; 42(7): 766-71, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25998857

RESUMO

It has been reported that the novel ATP-sensitive potassium (K-ATP) channel opener iptakalim (IPT) decreases ischemic neuronal damage in rats. However, the mechanisms underlying neuroprotection are still to be fully elucidated. The results of this study showed that mice with ischemia induced by middle cerebral artery occlusion exhibited higher mortality and more neurological deficits, as well as larger infarct volume, compared with sham mice. Moreover, it was found that ischemia activated astrocytes surrounding CA1 neurons with an increased expression of D-serine, induced greater microglial activation accompanied by higher tumor necrosis factor alpha (TNF-α) production, and caused higher expressions of matrix metalloproteinase 9 (MMP-9) in the endothelial cells of mice. Pretreatment with IPT significantly attenuated the neurological deficits and decreased the infarct volume in mice. IPT treatment could decrease MMP-9 secretion, inhibit astrocytic activation with decreasing D-serine and elevating connexin43 expression. Microglial activation was also inhibited and TNF-α production was decreased by IPT. Taken together, a K-ATP channel opener may improve the function of neurovascular unit and protect against ischemic injury. These findings suggest that targeting K-ATP channels provides a promising therapeutic approach for stroke.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Infarto da Artéria Cerebral Média/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Propilaminas/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Ativação do Canal Iônico/efeitos dos fármacos , Canais KATP/metabolismo , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Eur J Radiol Open ; 12: 100555, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38544918

RESUMO

Objective: To build a radiomics signature based on MRI images and evaluate its capability for preoperatively identifying the benign and malignant Soft tissue neoplasms (STTs). Materials and methods: 193 patients (99 malignant STTs and 94 benign STTs) were at random segmented into a training cohort (69 malignant STTs and 65 benign STTs) and a validation cohort (30 malignant STTs and 29 benign STTs) with a portion of 7:3. Radiomics features were extracted from T2 with fat saturation and T1 with fat saturation and gadolinium contrast images. Radiomics signature was developed by the least absolute shrinkage and selection operator (LASSO) logistic regression model. The receiver that operated characteristics curve (ROC) analysis was used to assess radiomics signature's prediction performance. Inner validation was performed on an autonomous cohort that contained 40 patients. Results: A radiomics was developed by a total of 16 radiomics features (5 original shape features and 11 were wavelet features) achieved favorable predictive efficacy. Malignant STTs showed higher radiomics score than benign STTs in both training cohort and validation cohort. A good prediction performance was shown by the radiomics signature in both training cohorts and validation cohorts. The training cohorts and validation cohorts had an area under curves (AUCs) of 0.885 and 0.841, respectively. Conclusions: A radiomics signature based on MRI images can be a trustworthy imaging biomarker for identification of the benign and malignant STTs, which could help guide treatment strategies.

11.
Int Immunopharmacol ; 133: 112074, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38615383

RESUMO

The tumor microenvironment plays a vital role in glioblastoma growth and invasion. PD-1 and PD-L1 modulate the immunity in the brain tumor microenvironment. However, the underlying mechanisms remain unclear. In the present study, in vivo and in vitro experiments were conducted to reveal the effects of PD-1/PD-L1 on the crosstalk between microglia and glioma. Results showed that glioma cells secreted PD-L1 to the peritumoral areas, particularly microglia containing highly expressed PD-1. In the early stages of glioma, microglia mainly polarized into the pro-inflammatory subtype (M1). Subsequently, the secreted PD-L1 accumulated and bound to PD-1 on microglia, facilitating their polarization toward the microglial anti-inflammatory (M2) subtype primarily via the STAT3 signaling pathway. The role of PD-1/PD-L1 in M2 polarization of microglia was partially due to PD-1/PD-L1 depletion or application of BMS-1166, a novel inhibitor of PD-1/PD-L1. Consistently, co-culturing with microglia promoted glioma cell growth and invasion, and blocking PD-1/PD-L1 significantly suppressed these processes. Our findings reveal that the PD-1/PD-L1 axis engages in the microglial M2 polarization in the glioma microenvironment and promotes tumor growth and invasion.


Assuntos
Antígeno B7-H1 , Neoplasias Encefálicas , Glioma , Microglia , Receptor de Morte Celular Programada 1 , Animais , Humanos , Masculino , Camundongos , Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Glioma/metabolismo , Glioma/patologia , Glioma/imunologia , Microglia/metabolismo , Microglia/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Microambiente Tumoral/imunologia
12.
Se Pu ; 41(6): 520-526, 2023 Jun 08.
Artigo em Zh | MEDLINE | ID: mdl-37259877

RESUMO

Gas chromatography-mass spectrometry (GC-MS) detectors are widely used detection instruments owing to their distinct advantages over other analytical techniques, including lower sample consumption, higher sensitivity, faster analysis speed, and simultaneous separation and analysis. Metabolomics is an important component of system physiology that concerns systematic studies of the metabolite spectrum in one or more biological systems, such as cells, tissues, organs, body fluids, and organisms. Unfortunately, conventional GC-MS detectors also feature low scan rates, high ion loss rates, and a narrow concentration detection range, which limit their applications in the field of metabolomics. Therefore, establishing a GC-MS-based metabolomic analysis method with wide coverage is of great importance. In this research, a widely-targeted metabolomics method based on GC-MS is proposed. This method combines the universality of untargeted metabolomics with the accuracy of targeted metabolomics to realize the qualitative and semi-quantitative detection of numerous metabolites. It does not require a self-built database and exhibits high sensitivity, good repeatability, and strong support for a wide range of metabolic substances. The proposed method was used to establish the relationship between the retention time of straight-chain fatty acid methyl esters (FAMEs) and their retention index (RI) in the FiehnLib database based on the metabolite information stored in this database. We obtained a linear relationship that could be described by the equation y=40878x-47530, r2=0.9999. We then calculated the retention times of metabolites in the FiehnLib database under the experimental conditions based on their RI. In this way, the effects of significant variations in peak retention times owing to differences in the chromatographic column, temperature, carrier gas flow rate, and so on can be avoided. The retention time of a substance fluctuates within a certain threshold because of variations in instrument performance, matrix interference, and other factors. As such, the retention time threshold of the substance must be determined. In this paper, the retention time threshold was set to 0.15 min to avoid instrument fluctuations. The optimal scan interval was optimized to 0.20 s (possible values=0.10, 0.15, 0.20, 0.25, and 0.30 s) because longer sampling periods can lead to spectral data loss and reductions in the resolution of adjacent chromatographic peaks, whereas shorter sampling periods can result in deterioration of the signal-to-noise ratio of the collected signals. The metabolite quantification ions were optimized to avoid the interference of quantification ion peak accumulation in the case of similar peak times, and a selected ion monitoring (SIM) method table was constructed for 611 metabolites, covering 65% of the metabolic pathways in the KEGG (Kyoto Encyclopedia of Genes and Genomes). The developed method covered 39 pathways, including glycolysis, the tricarboxylic acid cycle, purine metabolism, pyrimidine metabolism, amino acid metabolism, and biosynthesis. Compared with the full-scan untargeted GC-MS method, the widely-targeted GC-MS method demonstrated a 20%-30% increase in the number of metabolites detected, as well as a 15%-20% increase in signal-to-noise ratio. The results of stability tests showed that 84% of the intraday relative standard deviations (RSDs) of metabolite retention times were less than 2% and 91% of that were less than 3%; moreover, 54% of the interday RSDs of metabolite retention times were less than 2% and 76% of that were less than 3%. The detection and analysis results of common biological samples confirmed that the proposed method greatly improved the quantity and signal-to-noise ratio of the detected metabolites and is applicable to substances that are thermally stable, volatile, or volatile after derivation and have relative molecular masses lower than 600. Thus, the widely-targeted GC-MS method can expand the application scope of GC-MS in metabolomics.


Assuntos
Redes e Vias Metabólicas , Metabolômica , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas/métodos , Ciclo do Ácido Cítrico , Íons/química
13.
J Adv Res ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37572732

RESUMO

INTRODUCTION: Lipid metabolism dysfunction is widely involved in the pathological process of acute ischemic stroke (AIS). The coordination of lipid metabolism between neurons and astrocytes is of great significance. However, the full scope of lipid dynamic changes and the function of key lipids during AIS remain unknown. Hence, identifying lipid alterations and characterizing their key roles in AIS is of great importance. METHODS: Untargeted and targeted lipidomic analyses were applied to profile lipid changes in the ischemic penumbra and peripheral blood of transient middle cerebral artery occlusion (tMCAO) mice as well as the peripheral blood of AIS patients. Infarct volume and neurological deficits were assessed after tMCAO. The cell viability and dendritic complexity of primary neurons were evaluated by CCK8 assay and Sholl analysis. Seahorse, MitoTracker Green, tetramethyl rhodamine methyl ester (TMRM), 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and MitoSOX were used as markers of mitochondrial health. Fluorescent and isotopic free fatty acid (FFA) pulse-chase assays were used to track FFA flux in astrocytes. RESULTS: Long-chain acylcarnitines (LCACs) were the lipids with the most dramatic changes in the ischemic penumbra and peripheral blood of tMCAO mice. LCACs were significantly elevated on admission in AIS patients and associated with poor outcomes in AIS patients. Increasing LCACs through a bolus administration of palmitoylcarnitine amplified stroke injury, while decreasing LCACs by overexpressing carnitine palmitoyltransferase 2 (CPT2) ameliorated stroke injury. Palmitoylcarnitine aggravated astrocytic mitochondrial damage after OGD/R, while CPT2 overexpression in astrocytes ameliorated cocultured neuron viability. Further study revealed that astrocytes stimulated by OGD/R liberated FFAs from lipid droplets into mitochondria to form LCACs, resulting in mitochondrial damage and lowered astrocytic metabolic support and thereby aggravated neuronal damage. CONCLUSION: LCACs could accumulate and damage neurons by inducing astrocytic mitochondrial dysfunction in AIS. LCACs play a crucial role in the pathology of AIS and are novel promising diagnostic and prognostic biomarkers for AIS.

14.
Food Res Int ; 173(Pt 1): 113286, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803599

RESUMO

Foodborne microbial contamination (FMC) is the leading cause of food poisoning and foodborne illness. The foodborne microbial detection methods based on isothermal amplification have high sensitivity and short detection time, and functional nucleic acids (FNAs) could extend the detectable object of isothermal amplification to mycotoxins. Therefore, the strategy of FNAs-mediated isothermal amplification has been emergingly applied in biosensors for foodborne microbial contaminants detection, making biosensors more sensitive with lower cost and less dependent on nanomaterials for signal output. Here, the mechanism of six isothermal amplification technologies and their application in detecting FMC is firstly introduced. Then the strategy of FNAs-mediated isothermal amplification is systematically discussed from perspectives of FNAs' versatility including recognition elements (Aptamer, DNAzyme), programming tools (DNA tweezer, DNA walker and CRISPR-Cas) and signal units (G-quadruplex, FNAs-based nanomaterials). Finally, challenges and prospects are presented in terms of addressing the issue of nonspecific amplification reaction, developing better FNAs-based sensing elements and eliminating food matrix effects.


Assuntos
DNA Catalítico , Quadruplex G , Nanoestruturas , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA , DNA Catalítico/genética
15.
Cell Rep ; 42(6): 112617, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37285269

RESUMO

Neutrophil aggregation and clearance are important factors affecting neuroinflammatory injury during acute ischemic stroke. Emerging evidence suggests that energy metabolism is essential for microglial functions, especially microglial phagocytosis, which determines the degree of brain injury. Here, we demonstrate that Resolvin D1 (RvD1), a lipid mediator derived from docosahexaenic acid (DHA), promotes the phagocytosis of neutrophils by microglia, thereby reducing neutrophil accumulation in the brain and alleviating neuroinflammation in the ischemic brain. Further studies reveal that RvD1 reprograms energy metabolism from glycolysis to oxidative phosphorylation (OXPHOS), providing sufficient energy for microglial phagocytosis. Moreover, RvD1 enhances microglial glutamine uptake and stimulates glutaminolysis to support OXPHOS to boost ATP production depending on adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) activation. Overall, our results reveal that RvD1 reprograms energy metabolism to promote the microglial phagocytosis of neutrophils after ischemic stroke. These findings may guide perspectives for stroke therapy from modulating microglial immunometabolism.


Assuntos
AVC Isquêmico , Neutrófilos , Humanos , Microglia/metabolismo , AVC Isquêmico/metabolismo , Metabolismo Energético
16.
Cell Death Dis ; 12(1): 23, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33414461

RESUMO

Extracellular vesicles (EVs), as a novel intercellular communication carrier transferring cargo microRNAs (miRNAs), could play important roles in the brain remodeling process after ischemic stroke. However, the detailed mechanisms involved in EVs derived miRNAs-mediated cellular interactions in the brain remain unclear. Several studies indicated that microRNA-98 (miR-98) might participate in the pathogenesis of ischemic stroke. Here, we showed that expression of miR-98 in penumbra field kept up on the first day but dropped sharply on the 3rd day after ischemic stroke in rats, indicating that miR-98 could function as an endogenous protective factor post-ischemia. Overexpression of miR-98 targeted inhibiting platelet activating factor receptor-mediated microglial phagocytosis to attenuate neuronal death. Furthermore, we showed that neurons transferred miR-98 to microglia via EVs secretion after ischemic stroke, to prevent the stress-but-viable neurons from microglial phagocytosis. Therefore, we reveal that EVs derived miR-98 act as an intercellular signal mediating neurons and microglia communication during the brain remodeling after ischemic stroke. The present work provides a novel insight into the roles of EVs in the stroke pathogenesis and a new EVs-miRNAs-based therapeutic strategy for stroke.


Assuntos
Isquemia Encefálica/genética , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Doença Aguda , Animais , Modelos Animais de Doenças , Humanos , AVC Isquêmico , Fagocitose , Ratos
17.
Clin Exp Pharmacol Physiol ; 37(2): 243-52, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19413600

RESUMO

1. Stroke is the second most common cause of death and a major cause of disability worldwide. Despite increasing knowledge of the cellular and molecular mechanisms that occur in stroke, there are still large gaps in our understanding that are impeding therapeutic progress. In addition, there are no drugs yet that can be used effectively in stroke patients. 2. In recent years, it has been recognized that stroke is a brain dysfunction that involves multiple cell types and that a purely neurocentric focus or targeting a single point in a single pathway fails to yield sufficient protection. Thus, the concept of the 'neurovascular unit' has emerged as a new paradigm for stroke investigation and therapy. 3. ATP-sensitive potassium (K(ATP)) channels are unique channel proteins that directly couple the metabolic state of a cell to its electrical activity. These channels are found throughout the brain, being found in neurons, glial cells and in the brain vasculature. It is well documented that K(ATP) channels play multifactorial roles in protecting against brain injury induced by hypoxia, ischaemia or metabolic inhibition. 4. In the present review, we focus on the function of the neurovascular units in stroke and review current knowledge regarding K(ATP) channels, with a focus on their potential role in the remodelling of the neurovascular units.


Assuntos
Encéfalo/irrigação sanguínea , Canais KATP/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Astrócitos/patologia , Isquemia Encefálica/metabolismo , Junções Comunicantes/fisiologia , Ácido Glutâmico/fisiologia , Humanos , Camundongos , Microglia/fisiologia , Neurogênese/fisiologia , Canais de Potássio/fisiologia , Ratos , Acidente Vascular Cerebral/tratamento farmacológico , Vasodilatação/fisiologia
18.
Front Immunol ; 11: 178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194542

RESUMO

Background: Glioblastoma (GBM) is one of the most malignant and aggressive primary brain tumors. The incurability of glioblastoma is heavily influenced by the glioma microenvironment. FTY720, a potent immunosuppressant, has been reported to exert anti-tumor effects in glioblastoma. However, the impact of FTY720 on the glioma microenvironment remains unclear. Methods: We examined the effects of FTY720 on the distribution and polarization of glioma-associated microglia and macrophages (GAMs) in glioma-bearing rats using immunofluorescence staining. qRT-PCR and Western blotting were used to detect the expressions of CXCR4 and MAPK pathway-related signal molecules on microglia in the coculture system. The levels of inflammatory factors were tested via ELISA. Wound healing assay and Matrigel invasion assay were used to determine the migration and invasion of C6 glioma cells. Results: We discovered that FTY720 could inhibit the growth, migration, and invasion of glioma by targeting GAMs to impede their effect on glioma cells. Simultaneously, FTY720 could block the chemoattraction of GAMs by inhibiting MAPK-mediated secretion of IL-6 through increased internalization of CXCR4. Moreover, microglia and macrophages are polarized from pro-glioma to an anti-tumor phenotype. Conclusion: These results provide novel insights into the inhibitory effects of FTY720 on glioma by targeting GAMs-glioma interaction in the tumor microenvironment.


Assuntos
Antineoplásicos/administração & dosagem , Cloridrato de Fingolimode/administração & dosagem , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Microglia/efeitos dos fármacos , Receptores CXCR4/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Aloenxertos , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Modelos Animais de Doenças , Glioblastoma/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Microglia/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores CXCR4/genética , Transdução de Sinais/efeitos dos fármacos
19.
Neurochem Int ; 133: 104644, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31852624

RESUMO

The long noncoding RNA (lncRNA) rhabdomyosarcoma 2-associated transcript (RMST) silencing has been demonstrated to protect against ischemic brain injury in vivo and neuron injury in vitro. However, its underlying mechanisms in the progression of ischemic stroke have not been well explored. The expression of RMST in oxygen-glucose deprivation (OGD)-treated HT-22 hippocampal neuron cell line was examined using quantitative Real-Time PCR (qRT-PCR). CCK-8 cell viability and apoptotic cell detection using Annexin V-FITC and PI staining coupled with flow cytometry were performed to determine the pro-apoptotic role of RMST in HT-22 hippocampal neuron cell line. Furthermore, RNA pull-down, RNA immunoprecipitation (RIP), coimmunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP) and dual-Luciferase reporter assays were performed to determine the mechanism of RMST in OGD-induced HT-22 cell apoptosis. In the results, RMST was highly expressed in OGD-treated HT-22 cells. Altered RMST expression led to marked changes in HT-22 cell proliferation and apoptosis. Mechanistically, RMST indirectly activated p53/miR-107 signaling pathway via interacting with heterogeneous nuclear ribonucleoprotein K (hnRNPK) and fulfilled its pro-apoptotic function in HT-22 cells. In conclusion, our data indicated that the RMST/hnRNPK/p53/miR-107/Bcl2l2 axis plays an important role in regulating neuronal apoptosis.


Assuntos
Apoptose/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Animais , Proliferação de Células/fisiologia , Glucose/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Camundongos , Neurônios/metabolismo , Oxigênio/metabolismo , Transdução de Sinais/genética , Acidente Vascular Cerebral/metabolismo
20.
Int J Neuropsychopharmacol ; 12(6): 843-50, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19203409

RESUMO

Our previous study revealed that aquaporin 4 (AQP4) knockout attenuated locomotor activity in cocaine exposure mice and reduced the extracellular dopamine levels in the nucleus accumbens, suggesting that AQP4 might participate in cocaine addiction. The aim of the present study was to investigate the impact of AQP4 on cell proliferation of dentate gyrus in the mouse hippocampus after repeated cocaine treatment and withdrawal. The immunohistochemistry results showed that repeated cocaine administration significantly decreased cellular proliferation in the subgranular zone, which was followed by a rebound increase after 2-wk withdrawal and a return to normal level after 3-wk withdrawal. AQP4 knockout resisted cocaine-induced reductions of neural cell proliferation. Further studies through immunohistochemistry and immunoblot analysis showed that AQP4 knockout sustained the levels of glial fibrillary acidic protein in the hippocampus, and suppressed the enhancement of extracellular signal-regulated kinase phosphorylation induced by repeated cocaine administration. Notably, AQP4 knockout increased protein kinase C activity examined by substrate protein phosphorylation method, which was not affected by cocaine administration or withdrawal. We also found that repeated cocaine administration could elevate the expression of AQP4 in wild-type mice. In conclusion, it is reported for the first time that AQP4 knockout resisted cocaine-mediated inhibition of neural cell proliferation via up-regulating PKC-mediated signal transduction, suggesting that AQP4 might regulate neurogenesis during drug addiction. Our findings may have helpful implications in the cell biology of neurogenesis.


Assuntos
Aquaporina 4/deficiência , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Hipocampo/citologia , Neurônios/efeitos dos fármacos , Análise de Variância , Animais , Astrócitos/efeitos dos fármacos , Bromodesoxiuridina/metabolismo , Contagem de Células/métodos , Proliferação de Células/efeitos dos fármacos , Esquema de Medicação , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase C/metabolismo , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA