Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 19(42): 8164-8171, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850350

RESUMO

Functionalized metal-organic frameworks (MOFs) that integrate targeted tumor imaging and drug delivery are expected to significantly enhance the therapeutic efficacy of cancer. However, the complicated synthesis process has greatly limited their utilization in clinical application. Herein, a one-step simple method was used to construct novel multifunctional MOFs by co-loading doxorubicin (DOX) and Fe3O4 into the ZIF-8 with sodalite topology. DOX serves as a fluorescence imaging reagent and an anticancer drug and Fe3O4 is used as a magnetic resonance imaging and magnetic targeting anticancer reagent. The fabricated DOX/Fe3O4@ZIF-8 nanocomposite showed excellent fluorescence and magnetic resonance imaging performances in tumors. Moreover, DOX/Fe3O4@ZIF-8 can be accumulated in tumors via a magnetic targeting effect and tumor growth could be inhibited in vivo due to the release of DOX. Additionally, the apoptosis process of DOX/Fe3O4@ZIF-8 on HepG2 cells is well investigated. Overall, DOX/Fe3O4@ZIF-8 synthesized in simple one step can be used for simultaneous targeted bioimaging and cancer therapy.


Assuntos
Antineoplásicos , Estruturas Metalorgânicas , Sistemas de Liberação de Medicamentos , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Apoptose , Liberação Controlada de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA