Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(4): 5399-5413, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823821

RESUMO

Due to the widespread applications of high-dimensional representations in many fields, the three-dimension (3D) display technique is increasingly being used for commercial purpose in a holographic-like and immersive demonstration. However, the visual discomfort and fatigue of 3D head mounts demonstrate the limits of usage in the sphere of marketing. The compressive light field (CLF) display is capable of providing binocular and motion parallaxes by stacking multiple liquid crystal screens without any extra accessories. It leverages optical viewpoint fusion to bring an immersive and visual-pleasing experience for viewers. Unfortunately, its practical application has been limited by processing complexity and reconstruction performance. In this paper, we propose a dual-guided learning-based factorization on polarization-based CLF display with depth-assisted calibration (DAC). This substantially improves the visual performance of factorization in real-time processing. In detail, we first take advantage of a dual-guided network structure under the constraints of reconstructed and viewing images. Additionally, by utilizing the proposed DAC, we distribute each pixel on displayed screens following the real depth. Furthermore, the subjective performance is increased by using a Gauss-distribution-based weighting (GDBW) toward the concentration of the observer's angular position. Experimental results illustrate the improved performance in qualitative and quantitative aspects over other competitive methods. A CLF prototype is assembled to verify the practicality of our factorization.

2.
Opt Lett ; 46(18): 4538-4541, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525044

RESUMO

Speckle correlation imaging (SCI) has found tremendous versatility compared with other scattering imaging approaches due to its single-shot data acquisition strategy, relatively simple optical setup, and high-fidelity reconstruction performance. However, this simplicity requires SCI experiments to be performed strictly in a darkroom condition. As background noise increases, the speckle contrast rapidly decreases, making precise interpretation of the data extremely difficult. Here, we demonstrate a method by refining the speckle in the autocorrelation domain to achieve high-performance single-shot imaging. Experiment results prove that our method is adapted to estimate objects in a low signal-to-background ratio (SBR) circumstance even if the SBR is about -23dB. Laboratory and outdoor SCI experiments are performed.

3.
BMC Geriatr ; 21(1): 377, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34154560

RESUMO

BACKGROUND: Comprehensive geriatric assessment (CGA) interventions can improve functional ability and reduce mortality in older adults, but the effectiveness of CGA intervention on the quality of life, caregiver burden, and length of hospital stay remains unclear. The study aimed to determine the effectiveness of CGA intervention on the quality of life, length of hospital stay, and caregiver burden in older adults by conducting meta-analyses of randomised controlled trials (RCTs). METHODS: A literature search in PubMed, Embase, and Cochrane Library was conducted for papers published before February 29, 2020, based on inclusion criteria. Standardised mean difference (SMD) or mean difference (MD) with 95% confidence intervals (CIs) was calculated using the random-effects model. Subgroup analyses, sensitivity analyses, and publication bias analyses were also conducted. RESULTS: A total of 28 RCTs were included. Overall, the intervention components common in different CGA intervention models were interdisciplinary assessments and team meetings. Meta-analyses showed that CGA interventions improved the quality of life of older people (SMD = 0.12; 95% CI = 0.03 to 0.21; P = 0.009) compared to usual care, and subgroup analyses showed that CGA interventions improved the quality of life only in participants' age > 80 years and at follow-up ≤3 months. The change value of quality of life in the CGA intervention group was better than that in the usual care group on six dimensions of the 36-Item Short-Form Health Survey questionnaire (SF-36). Also, compared to usual care, the CGA intervention reduced the caregiver burden (SMD = - 0.56; 95% CI = - 0.97 to - 0.15, P = 0.007), but had no significant effect on the length of hospital stay. CONCLUSIONS: CGA intervention was effective in improving the quality of life and reducing caregiver burden, but did not affect the length of hospital stay. It is recommended that future studies apply the SF-36 to evaluate the impact of CGA interventions on the quality of life and provide supportive strategies for caregivers as an essential part of the CGA intervention, to find additional benefits of CGA interventions.


Assuntos
Avaliação Geriátrica , Qualidade de Vida , Idoso , Idoso de 80 Anos ou mais , Sobrecarga do Cuidador , Cuidadores , Humanos , Tempo de Internação , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
Sci Rep ; 14(1): 10666, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724635

RESUMO

The railway rivet is one of the most important and easily damaged parts of the connection. If rivets develop cracks during the production process, their load-bearing capacity will be reduced, thereby increasing the risk of failure. Fluorescent magnetic particle flaw detection (FMPFD) is a widely used inspection method for train fasteners. Manual inspection is not only time-consuming but also prone to miss detection, therefore intelligent detection system has important application value. However, the fluorescent crack images obtained by FMPFD present challenges for intelligent detection, such as the dense, multi-scaled and uninstantiated cracks. In addition, there is limited research on fluorescent rivet crack detection. This paper adopts instance segmentation to achieve automatic cracks detection of rivets. A decentralized target center and low overlap rate labeling method is proposed, and a Gaussian-weighted correction post-processing method is introduced to improve the recall rate in the areas of dense cracks. An efficient channel spatial attention mechanism for feature extraction is proposed in order to enhance the detection of multi-scale cracks. For uninstantiated cracks, an improvement of crack detection in uninstantiated regions based on multi task feature learning is proposed, thoroughly utilizing the semantic and spatial features of the fluorescent cracks. The experimental results show that the improved methods are better than the baseline and some cutting-edge algorithms, achieving a recall rate and mAP0.5 of 86.4% and 90.3%. In addition, a single coil non-contact train rivet composite magnetization device is built for rivets that can magnetize different shapes of rivets and has universality.

5.
Comput Biol Med ; 121: 103800, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32568678

RESUMO

Arrhythmias are a group of common conditions associated with irregular heart rhythms. Some of these conditions, for instance, atrial fibrillation (AF), might develop into serious syndromes if not treated in time. Therefore, for high-risk patients, early detection of arrhythmias is crucial. In this study, we propose employing deep convolutional neural network (CNN)-based algorithms for real-time arrhythmia detection. We first build a full-precision deep convolutional network model. With our proposed construction, we are able to achieve state-of-the-art level performance on the PhysioNet/CinC AF Classification Challenge 2017 dataset with our full-precision model. It is desirable to employ models with low computing resource requirements. It has been shown that a binarized model requires much less computing power and memory space than a full-precision model. We proceed to verify the feasibility of binarization in our neural network model. Network binarization can cause significant model performance degradation. Therefore, we propose employing a full-precision model as the teacher to regularize the training of the binarized model through knowledge distillation. With our proposed approach, we observe that network binarization only causes a small performance loss (the F1 score decreases from 0.88 to 0.87 for the validation set). Given that binarized convolutional networks can achieve favorable model performance while dramatically reducing computing cost, they are ideal for deployment on long-term cardiac condition monitoring devices. (Source code is available at https://github.com/yangfansun/bnn-ecg).


Assuntos
Fibrilação Atrial , Eletrocardiografia , Algoritmos , Fibrilação Atrial/diagnóstico , Humanos , Redes Neurais de Computação , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA