Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(6): 4036-4044, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38291728

RESUMO

As an important biomarker, ammonia exhibits a strong correlation with protein metabolism and specific organ dysfunction. Limited by the immobile instrumental structure, invasive and complicated procedures, and unsatisfactory online sensitivity and selectivity, current medical diagnosis fails to monitor this chemical in real time efficiently. Herein, we present the successful synthesis of a long-range epitaxial metal-organic framework on a millimeter domain-sized single-crystalline graphene substrate (LR-epi-MOF). With a perfect 30° epitaxial angle and a mere 2.8% coincidence site lattice mismatch between the MOF and graphene, this long-range-ordered epitaxial structure boosts the charge transfer from ammonia to the MOF and then to graphene, thereby promoting the overall charge delocalization and exhibiting extraordinary electrical global coupling properties. This unique characteristic imparts a remarkable sensitivity of 0.1 ppb toward ammonia. The sub-ppb detecting capability and high anti-interference ability enable continuous information recording of breath ammonia that is strongly correlated with the intriguing human lifestyle. Wearable electronics based on the LR-epi-MOF could accurately portray the active protein metabolism pattern in real time and provide personal assistance in health management.


Assuntos
Grafite , Estruturas Metalorgânicas , Humanos , Amônia , Grafite/química , Eletrônica
2.
J Am Chem Soc ; 146(12): 8520-8527, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38491937

RESUMO

Two-dimensional (2D) zeolite, with a high aspect ratio, has more open skeletons and accessible active sites than its three-dimensional (3D) counterpart. However, traditional methods of obtaining 2D zeolites often cause structural damage and widespread skeleton defects, hindering efficient selectivity in molecular separation. In this study, we present, for the first time, a direct epitaxial synthesis of 2D zeolite (Epi-MWW) guided by hexagonal boron nitride (h-BN) with a coincidence matching of site lattices to MWW zeolite. The as-grown Epi-MWW zeolite possesses a high crystallinity and intact hexagonal 2D morphology, with an average thickness of 10 nm and an aspect ratio of over 50. Thanks to its excellent molecular accessibility, the diffusion time constants of o-xylene (OX) and p-xylene (PX) are as 12 and 133 times higher than those of conventional MCM-22, respectively; the PX/OX selectivity of Epi-MWW is 7.4 times better than MCM-22 as calculated by the ideal adsorbed solution theory.

3.
Nat Mater ; 22(11): 1324-1331, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770676

RESUMO

Two-dimensional (2D) semiconductors, such as transition metal dichalcogenides, provide an opportunity for beyond-silicon exploration. However, the lab to fab transition of 2D semiconductors is still in its preliminary stages, and it has been challenging to meet manufacturing standards of stability and repeatability. Thus, there is a natural eagerness to grow wafer-level, high-quality films with industrially acceptable scale-cost-performance metrics. Here we report an improved chemical vapour deposition synthesis method in which the controlled release of precursors and substrates predeposited with amorphous Al2O3 ensure the uniform synthesis of monolayer MoS2 as large as 12 inches while also enabling fast and non-toxic growth to reduce manufacturing costs. Transistor arrays were fabricated to further confirm the high quality of the film and its integrated circuit application potential. This work achieves the co-optimization of scale-cost-performance metrics and lays the foundation for advancing the integration of 2D semiconductors in industry-standard pilot lines.

4.
Langmuir ; 37(22): 6776-6782, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34032438

RESUMO

Wrinkling occurs on the surfaces of large-area graphene ubiquitously. Despite that the wrinkled structures are found to degrade the lubricous property, the behind mechanisms remain less understood. Here, atomic force microscopy is adopted to characterize the friction and wear properties of graphene wrinkles (GWs) with different heights by nanoscratch tests. We verify the phenomena of high friction and reduced load-carrying capacity of wrinkles and report the observation of lubrication deterioration with increased heights. Using molecular dynamics simulations, we reveal that the contact quality at the interface is a dominant role in the friction evolution of wrinkles. The high friction of wrinkles is determined by the increased contact area and commensurability caused by the wrinkle deformation and topography changes. The wrinkle failure initiates near the root of the formed bilayer configuration due to the increased lateral stiffness and reduced atomic distance between the wrinkle layers. The increased interlocking effect results in a local shear stress of 91 GPa and induces the phase transitions of carbon atoms easily. As the wrinkle height decreases, the unstable local configuration weakens the interlocking effects and cannot fail even at a high load. This investigation sheds light on the microscopic frictional contact of GWs and provides guidance for tuning the tribological properties of graphene by controlling the wrinkle structures.

5.
J Am Chem Soc ; 141(28): 11322-11327, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31265260

RESUMO

With tunable pore size and rich active metal centers, metal-organic frameworks (MOFs) have been regarded as the one of the promising materials for catalysis. Prospectively, employing MOFs in electrochemistry would notably broaden the scope of electrocatalysis. However, this application is largely hindered by MOFs' conventionally poor electrical conductivity. Integrating MOFs without compromising their crystalline superiority holds a grand challenge to unveil their pristine electrocatalytic properties. In this work, we introduce an epitaxial growth strategy to accomplish the efficient integration of the insulating MOFs into electrochemistry. Particularly, with pristine-graphene-templated growth, the two-dimensional (2D) single-crystal MOF possesses a large lateral size of ∼23 µm and high aspect ratio up to ∼1500 and exhibits a significant electrochemical enhancement, with a charge transfer resistance of ∼200 ohm and a 30 mA cm-2 current density at only 0.53 V versus a reversible hydrogen electrode. The epitaxial strategy could be further applied to other 2D substrates, such as MoS2. This MOF/graphene 2D architecture sheds light on integrating insulating MOFs into electrochemical applications.

6.
Nanotechnology ; 30(17): 174002, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-30641493

RESUMO

Chemical vapor deposition synthesis of semiconducting transition metal dichalcogenides (TMDs) offers a new route to build next-generation semiconductor devices. But realization of continuous and uniform multilayer (ML) TMD films is still limited by their specific growth kinetics, such as the competition between surface and interfacial energy. In this work, a layer-by-layer vacuum stacking transfer method is applied to obtain uniform and non-destructive ML-MoS2 films. Back-gated field effect transistor (FET) arrays of 1L- and 2L-MoS2 are fabricated on the same wafer, and their electrical performances are compared. We observe a significant increase of field-effect mobility for 2L-MoS2 FETs, up to 32.5 cm2 V-1 s-1, which is seven times higher than that of 1L-MoS2 (4.5 cm2 V-1 s-1). Then we also fabricated 1L-, 2L-, 3L-, and 4L-MoS2 FETs to further investigate the thickness-dependent characteristics of transferred ML-MoS2. Measurement results show a higher mobility but a smaller current on/off ratio as the layer number increases, suggesting that a balance between mobility and current on/off ratio can be achieved in 2L- and 3L-MoS2 FETs. Dual-gated structure is also investigated to demonstrate an improved electrostatic control of the ML-MoS2 channel.

7.
Small ; 14(48): e1803465, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30328296

RESUMO

Atomic thin transition-metal dichalcogenides (TMDs) are considered as an emerging platform to build next-generation semiconductor devices. However, to date most devices are still based on exfoliated TMD sheets on a micrometer scale. Here, a novel chemical vapor deposition synthesis strategy by introducing multilayer (ML) MoS2 islands to improve device performance is proposed. A four-probe method is applied to confirm that the contact resistance decreases by one order of magnitude, which can be attributed to a conformal contact by the extra amount of exposed edges from the ML-MoS2 islands. Based on such continuous MoS2 films synthesized on a 2 in. insulating substrate, a top-gated field effect transistor (FET) array is fabricated to explore key metrics such as threshold voltage (V T ) and field effect mobility (µFE ) for hundreds of MoS2 FETs. The statistical results exhibit a surprisingly low variability of these parameters. An average effective µFE of 70 cm2 V-1 s-1 and subthreshold swing of about 150 mV dec-1 are extracted from these MoS2 FETs, which are comparable to the best top-gated MoS2 FETs achieved by mechanical exfoliation. The result is a key step toward scaling 2D-TMDs into functional systems and paves the way for the future development of 2D-TMDs integrated circuits.

8.
Inorg Chem ; 56(9): 5069-5075, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28414452

RESUMO

Achieving tailorable gated adsorption by tuning the dynamic behavior of a host porous material is of great interest because of its practical application in gas adsorption and separation. Here we devise a unique cation-exchange approach to tune the dynamic behavior of a flexible anionic framework, [Zn2(bptc)(datrz)]- (denoted as MAC-6, where H4bptc = [1,1'-biphenyl]-3,3',5,5'-tetracarboxylic acid and Hdatrz = 3,5-diamine-1H-1,2,4-triazole), so as to realize the tailorable gated adsorption. The CO2 adsorption amount at 273 K can be enhanced by exchanging the counterion of protonated dimethylamine (HDMA+) with tetraethylammonium (TEA+), tetrabutylammonium (TBA+), and tetramethylammonium (TMA+), where the adsorption behavior is transferred from nongated to gated adsorption. Interestingly, the Pgo for gate-opening adsorption can be further tuned from 442 to 331 mmHg by simply adjusting the ratio of HDMA+ and TMA+. The origin of this unique tunable property, as revealed by X-ray diffraction experiments and structure models, is rooted at the cation-responsive characteristic of this flexible framework.

9.
Nature ; 468(7323): 549-52, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21068724

RESUMO

Monolayer graphene was first obtained as a transferable material in 2004 and has stimulated intense activity among physicists, chemists and material scientists. Much research has been focused on developing routes for obtaining large sheets of monolayer or bilayer graphene. This has been recently achieved by chemical vapour deposition (CVD) of CH(4) or C(2)H(2) gases on copper or nickel substrates. But CVD is limited to the use of gaseous raw materials, making it difficult to apply the technology to a wider variety of potential feedstocks. Here we demonstrate that large area, high-quality graphene with controllable thickness can be grown from different solid carbon sources-such as polymer films or small molecules-deposited on a metal catalyst substrate at temperatures as low as 800 °C. Both pristine graphene and doped graphene were grown with this one-step process using the same experimental set-up.

10.
ChemSusChem ; : e202400448, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797704

RESUMO

The catalytic system of biological nitrogen fixation in nature primarily relies on the "MoFe cofactor" within nitrogenase enzymes. Inspired by this natural organic structure, we have designed a bionic inorganic counterpart, iron doped MoSe2, for the efficient electroreduction of dinitrogen to ammonia. The introduced Fe dopant significantly enhances nitrogen fixation activity of MoSe2. Furthermore, we constructed a heterostructure catalyst, the Fe-MoSe2/Mo2C with more versatile Mo valence states. The heterostructured electrocatalyst achieves an ammonia production rate of 3.38 µg h-1 cm-2, and a Faradaic efficiency of 30.8%, which is ~5 fold higher than that of pristine MoSe2. This study presents a novel approach for designing bionic nitrogen fixation electrocatalysts.

11.
ACS Appl Mater Interfaces ; 16(19): 24580-24589, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38706440

RESUMO

The precise design and synthesis of active sites to improve catalyst's performance has emerged as a promising tactic for electrochemistry. However, it is challenging to combine different types of active sites and manipulate them simultaneously at atomic resolution. Here, we present a strategy to synthesize Re atom-doped Cu twin boundaries (TBs), through pulsed electrodeposition and boundary segregation. The Re-doped Cu TBs demonstrate a highly efficient nitrogen reduction reaction (NRR) performance. Re-doped Cu TBs showed a turnover frequency of ∼5889 s-1, ∼800 times higher than the pure Cu TB active centers (∼7 s-1). In addition to the "acceptance-donation" activation of N2 molecules, theoretical calculations also reveal that the Re-Re dimer on TB can boost the NRR and impede the hydrogen evolution reaction synchronously, rendering Re-doped Cu TB catalysts with high NRR activity and selectivity.

12.
Nano Lett ; 12(7): 3711-5, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22663563

RESUMO

We have fabricated a centimeter-size single-layer graphene device with a gate electrode, which can modulate the transmission of terahertz and infrared waves. Using time-domain terahertz spectroscopy and Fourier-transform infrared spectroscopy in a wide frequency range (10-10 000 cm(-1)), we measured the dynamic conductivity change induced by electrical gating and thermal annealing. Both methods were able to effectively tune the Fermi energy, E(F), which in turn modified the Drude-like intraband absorption in the terahertz as well as the "2E(F) onset" for interband absorption in the mid-infrared. These results not only provide fundamental insight into the electromagnetic response of Dirac fermions in graphene but also demonstrate the key functionalities of large-area graphene devices that are desired for components in terahertz and infrared optoelectronics.

13.
J Am Chem Soc ; 134(28): 11774-80, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22716929

RESUMO

Graphene oxide nanoribbons (GONRs) are wide bandgap semiconductors that can be reduced to metallic graphene nanoribbons. The transformation of GONRs from their semiconductive to the metallic state by annealing has attracted significant interest due to its simplicity. However, the detailed process by which GONRs transform from wide-bandgap semiconductors to semimetals with a near zero bandgap is unclear. As a result, precise control of the bandgap between these two states is not currently achievable. Here, we quantitatively examine the removal of oxygen-containing groups and changes in the bandgap during thermal annealing of GONRs. X-ray photoelectron spectroscopy measurements show the progressive removal of oxygen-containing functional groups. Aberration-corrected scanning transmission electron microscopy reveals that initially small graphene regions in GONRs become large stacked graphitic layers during thermal annealing. These structural and chemical changes are correlated with progressive changes in the electrochemical bandgap, monitored by cyclic voltammetry. These results show that small changes in the thermal annealing temperature result in significant changes to the bandgap and chemical composition of GONRs and provide a straightforward method for tuning the bandgap in oxidized graphene structures.

14.
Small ; 8(1): 59-62, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22072581

RESUMO

A controlled ambipolar-to-unipolar (n-type) conversion, along with a maximum fourfold increase in the electron mobility, in graphene field-effect transistors (FETs) is achieved by coating the surface of graphene with a layer of a mixed polymer system, poly(ethylene imine) (PEI) in poly(ethylene glycol) (PEG). The PEG serves as a physisorption adhesion agent for the PEI. Both unipolar and ambipolar n-type doping can be realized by adjusting the thickness of PEI films atop the graphene channel. The observed phenomena are attributed to the doping/dedoping effects of the external PEI film. The study provides a guide to engineering graphene transport properties through chemical modifications.


Assuntos
Grafite/química , Iminas/química , Membranas Artificiais , Polietilenoglicóis/química , Polietilenos/química , Transistores Eletrônicos
15.
ACS Cent Sci ; 8(3): 394-401, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35355814

RESUMO

It is of great significance to explore unique and diverse chemical pathways to convert CO2 into high-value-added products. Bilayer graphene (BLG), with a tunable twist angle and band structure, holds tremendous promise in both fundamental physics and next-generation high-performance devices. However, the π-conjugation and precise two-atom thickness are hindering the selective pathway, through an uncontrolled CO2 reduction and perplexing growth mechanism. Here, we developed a chemical vapor deposition method to catalytically convert CO2 into a high-quality BLG single crystal with a room temperature mobility of 2346 cm2 V-1 s-1. In a finely controlled growth window, the CO2 molecule works as both the carbon source and the oxygen etchant, helping to precisely define the BLG nucleus and set a record growth rate of 300 µm h-1.

16.
ACS Appl Mater Interfaces ; 14(37): 42356-42364, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36074810

RESUMO

The high surface-to-volume ratio and decent material properties of two-dimensional (2D) transition metal dichalcogenides (TMDs) make them advantageous as an active channel in field-effect transistor (FET)-type gas sensing devices. However, most existing TMD gas sensors are based on a two-terminal resistance-type structure and suffer from low responsivity and slow response, which has urged materials optimization as well as device engineering. Metal-organic frameworks (MOFs) have a large number of ordered binding sites in the pores that can specifically bind to gas molecules and can be decorated on TMD surfaces to enhance gas sensing capabilities. In this work, we successfully realize the FET-type gas sensor with MoS2-MOF as the channel. The fabricated gas sensor exhibits enhanced NH3 sensing performance (22.475 times higher in responsivity) as compared to the device with a bare MoS2 channel. In addition, the FET-type gas sensor geometry enables effective tuning of sensitivity through electrical gating based on the modulation over the channel carrier concentration. Furthermore, the dependence of responsivity on the MoS2 thickness is investigated as well to achieve an in-depth understanding of the electrical modulation mechanism of the MOF-decorated MoS2 gas sensors. The demonstrated results can pave an attractive pathway toward the realization of advanced high-response and tunable TMD-based gas sensing devices.

17.
Adv Mater ; 34(48): e2202472, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35728050

RESUMO

2D semiconductors, such as molybdenum disulfide (MoS2 ), have attracted tremendous attention in constructing advanced monolithic integrated circuits (ICs) for future flexible and energy-efficient electronics. However, the development of large-scale ICs based on 2D materials is still in its early stage, mainly due to the non-uniformity of the individual devices and little investigation of device and circuit-level optimization. Herein, a 4-inch high-quality monolayer MoS2 film is successfully synthesized, which is then used to fabricate top-gated (TG) MoS2 field-effect transistors with wafer-scale uniformity. Some basic circuits such as static random access memory and ring oscillators are examined. A pass-transistor logic configuration based on pseudo-NMOS is then employed to design more complex MoS2 logic circuits, which are successfully fabricated with proper logic functions tested. These preliminary integration efforts show the promising potential of wafer-scale 2D semiconductors for application in complex ICs.

18.
Sci Bull (Beijing) ; 67(3): 270-277, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546076

RESUMO

Recently, research on two-dimensional (2D) semiconductors has begun to translate from the fundamental investigation into rudimentary functional circuits. In this work, we unveil the first functional MoS2 artificial neural network (ANN) chip, including multiply-and-accumulate (MAC), memory and activation function circuits. Such MoS2 ANN chip is realized through fabricating 818 field-effect transistors (FETs) on a wafer-scale and high-homogeneity MoS2 film, with a gate-last process to realize top gate structured FETs. A 62-level simulation program with integrated circuit emphasis (SPICE) model is utilized to design and optimize our analog ANN circuits. To demonstrate a practical application, a tactile digit sensing recognition was demonstrated based on our ANN circuits. After training, the digit recognition rate exceeds 97%. Our work not only demonstrates the protentional of 2D semiconductors in wafer-scale integrated circuits, but also paves the way for its future application in AI computation.


Assuntos
Children's Health Insurance Program , Molibdênio , Redes Neurais de Computação , Simulação por Computador , Semicondutores
19.
Nano Lett ; 10(10): 4105-10, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20806916

RESUMO

Because of its excellent dielectric properties, silicon oxide (SiO(x)) has long been used and considered as a passive, insulating component in the construction of electronic devices. In contrast, here we demonstrate resistive switches and memories that use SiO(x) as the sole active material and can be implemented in entirely metal-free embodiments. Through cross-sectional transmission electron microscopy, we determine that the switching takes place through the voltage-driven formation and modification of silicon (Si) nanocrystals (NCs) embedded in the SiO(x) matrix, with SiO(x) itself also serving as the source of the formation of this Si pathway. The small sizes of the Si NCs (d ∼ 5 nm) suggest that scaling to ultrasmall domains could be feasible. Meanwhile, the switch also shows robust nonvolatile properties, high ON/OFF ratios (>10(5)), fast switching (sub-100-ns), and good endurance (10(4) write-erase cycles). These properties in a SiO(x)-based material composition showcase its potentials in constructing memory or logic devices that are fully CMOS compatible.

20.
Nat Commun ; 12(1): 2139, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837209

RESUMO

The gaseous product concentration in direct electrochemical CO2 reduction is usually hurdled by the electrode's Faradaic efficiency, current density, and inevitable mixing with the unreacted CO2. A concentrated gaseous product with high purity will greatly lower the barrier for large-scale CO2 fixation and follow-up industrial usage. Here, we developed a pneumatic trough setup to collect the CO2 reduction product from a precisely engineered nanotwinned electrocatalyst, without using ion-exchange membrane. The silver catalyst's twin boundary density can be tuned from 0.3 to 1.5 × 104 cm-1. With the lengthy and winding twin boundaries, this catalyst exhibits a Faradaic efficiency up to 92% at -1.0 V and a turnover frequency of 127 s-1 in converting CO2 to CO. Through a tandem electrochemical-CVD system, we successfully produced CO with a volume percentage of up to 52%, and further transformed it into single layer graphene film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA