RESUMO
Effective treatment of brain disorders requires a focus on improving drug permeability across the blood-brain barrier (BBB). Herein, we examined the pharmacokinetic properties of negatively charged iron oxide nanoparticles (IONPs) and the capability of using lysophosphatidic acid (LPA) to transiently disrupt the tight junctions and allow IONPs to enter the brain. Under normal conditions, IONPs had a plasma half-life of six minutes, with the liver and spleen being the major organs of deposition. Treatment with LPA enhanced accumulation of IONPs in the brain and spleen (approximately 4-fold vs. control). LPA and IONP treated mice revealed no sign of peripheral immune cell infiltration in the brain and no significant activation of microglia or astrocytes. These studies show improved delivery efficiency of IONPs following LPA administration. Our findings suggest transient disruption of the BBB may be a safe and effective method for increasing IONP delivery to the brain.
Assuntos
Barreira Hematoencefálica , Lisofosfolipídeos/farmacologia , Nanopartículas , Animais , Encéfalo , Compostos Férricos , Lisofosfolipídeos/administração & dosagem , Camundongos , Baço , Distribuição TecidualRESUMO
Iron oxide nanoparticles (IONPs) and their surface modifications with therapeutic or diagnostic (theranostic, TN) agents are of great interest. Here we present a novel one-pot synthesis of a versatile general TN precursor (aminosilane-coated IONPs [IONP-Sil(NH2)]) with surface amine groups. Surface functional group conversion to carboxylic acid was accomplished by conjugating poly(ethylene glycol) diacid to IONP-Sil(NH2). The NPs were characterized using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM, selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) spectroscopy. Biocompatibility and cell uptake profile of the nanoparticles were evaluated in-vitro using cultured liver cells (HepG2). Oleylamine (hydrophobic) and bovine serum albumin (BSA) as model drugs were attached to IONP-Sil-PEG(COOH). The ability of IONP-Sil(NH2) to bind small interfering RNA (siRNA) is also shown.
Assuntos
Compostos Férricos/química , Nanopartículas/química , Silanos/químicaRESUMO
Nanoparticles targeting endothelial cells to treat diseases such as cancer, oxidative stress, and inflammation have traditionally relied on ligand-receptor based delivery. The present studies examined the influence of nanoparticle shape in regulating preferential uptake of nanoparticles in endothelial cells. Spherical and brick shaped iron oxide nanoparticles (IONPs) were synthesized with identical negatively charged surface coating. The nanobricks showed a significantly greater uptake profile in endothelial cells compared to nanospheres. Application of an external magnetic field significantly enhanced the uptake of nanobricks but not nanospheres. Transmission electron microscopy revealed differential internalization of nanobricks in endothelial cells compared to epithelial cells. Given the reduced uptake of nanobricks in endothelial cells treated with caveolin inhibitors, the increased expression of caveolin-1 in endothelial cells compared to epithelial cells, and the ability of IONP nanobricks to interfere with caveolae-mediated endocytosis process, a caveolae-mediated pathway is proposed as the mechanism for differential internalization of nanobricks in endothelial cells.
RESUMO
PURPOSE: The present study examines the use of an external magnetic field in combination with the disruption of tight junctions to enhance the permeability of iron oxide nanoparticles (IONPs) across an in vitro model of the blood-brain barrier (BBB). The feasibility of such an approach, termed magnetic field enhanced convective diffusion (MFECD), along with the effect of IONP surface charge on permeability, was examined. METHODS: The effect of magnetic field on the permeability of positively (aminosilane-coated [AmS]-IONPs) and negatively (N-(trimethoxysilylpropyl)ethylenediaminetriacetate [EDT]-IONPs) charged IONPs was evaluated in confluent monolayers of mouse brain endothelial cells under normal and osmotically disrupted conditions. RESULTS: Neither IONP formulation was permeable across an intact cell monolayer. However, when tight junctions were disrupted using D-mannitol, flux of EDT-IONPs across the bEnd.3 monolayers was 28%, increasing to 44% when a magnetic field was present. In contrast, the permeability of AmS-IONPs after osmotic disruption was less than 5%. The cellular uptake profile of both IONPs was not altered by the presence of mannitol. CONCLUSIONS: MFECD improved the permeability of EDT-IONPs through the paracellular route. The MFECD approach favors negatively charged IONPs that have low affinity for the brain endothelial cells and high colloidal stability. This suggests that MFECD may improve IONP-based drug delivery to the brain.
Assuntos
Barreira Hematoencefálica/química , Barreira Hematoencefálica/efeitos da radiação , Eletroporação/métodos , Células Endoteliais/química , Células Endoteliais/efeitos da radiação , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/efeitos da radiação , Animais , Linhagem Celular , Convecção , Difusão/efeitos da radiação , Magnetoterapia/métodos , Campos Magnéticos , CamundongosRESUMO
INTRODUCTION AND RATIONALE: Previous studies have shown that delayed neutrophil apoptosis is associated with chronic airway diseases. Leptin is an adipocyte-derived hormone that acts as a regulator of energy homeostasis and food intake. Emerging evidence suggests that leptin can regulate immune responses including the release of proinflammatory cytokines and protection of inflammatory cells from apoptosis. Serum leptin is increased during allergic reactions in the airways. However, the expression and function of leptin receptor in neutrophils isolated from children is not known. METHODS: Flow cytometry was used to detect leptin receptor expression in neutrophils isolated from allergic asthmatic (nâ=â14), allergic non asthmatic (nâ=â21), non allergic asthmatic (nâ=â7) and healthy children (nâ=â23); confocal laser scanning microscopy combined with immunofluorescence was performed to detect intracellular pool of leptin receptor; Annexin-V/PI staining and caspase 3 activity was used to determine neutrophil survival. Pharmacological inhibitors were utilized to understand the role of MAPK and NF-κB pathway in leptin-induced neutrophil survival. RESULTS AND CONCLUSION: A heterogeneous leptin receptor expression was observed on neutrophils isolated from children. Neutrophils isolated from healthy children expressed more leptin receptor than those from allergic asthmatic (P<0.05) but not allergic non-asthmatic (P>0.05) or non-allergic asthmatic children (nâ=â7, P>0.05). Neutrophils isolated from children express an intracellular pool of leptin receptor that was mobilized to the cell surface upon GM-CSF stimulation. Finally, leptin exhibited anti-apoptotic properties on neutrophils via NF-κB and MEK1/2 MAPK pathway. Collectively, our data suggest that leptin may enhance airway inflammation by promoting neutrophil survival.
Assuntos
Apoptose/fisiologia , Asma/metabolismo , Leptina/metabolismo , NF-kappa B/metabolismo , Neutrófilos/metabolismo , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Anexina A5 , Caspase 3/metabolismo , Criança , Citometria de Fluxo , Imunofluorescência , Humanos , Leptina/sangue , Microscopia Confocal , Neutrófilos/citologia , Receptores para Leptina/metabolismoRESUMO
BACKGROUND: Aminosilane-coated iron oxide nanoparticles (AmS-IONPs) have been widely used in constructing complex and multifunctional drug delivery systems. However, the biocompatibility and uptake characteristics of AmS-IONPs in central nervous system (CNS)-relevant cells are unknown. The purpose of this study was to determine the effect of surface charge and magnetic field on toxicity and uptake of AmS-IONPs in CNS-relevant cell types. METHODS: The toxicity and uptake profile of positively charged AmS-IONPs and negatively charged COOH-AmS-IONPs of similar size were examined using a mouse brain microvessel endothelial cell line (bEnd.3) and primary cultured mouse astrocytes and neurons. Cell accumulation of IONPs was examined using the ferrozine assay, and cytotoxicity was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS: No toxicity was observed in bEnd.3 cells at concentrations up to 200 µg/mL for either AmS-IONPs or COOH-AmS-IONPs. AmS-IONPs at concentrations above 200 µg/mL reduced neuron viability by 50% in the presence or absence of a magnetic field, while only 20% reductions in viability were observed with COOH-AmS-IONPs. Similar concentrations of AmS-IONPs in astrocyte cultures reduced viability to 75% but only in the presence of a magnetic field, while exposure to COOH-AmS-IONPs reduced viability to 65% and 35% in the absence and presence of a magnetic field, respectively. Cellular accumulation of AmS-IONPs was greater in all cell types examined compared to COOH-AmS-IONPs. Rank order of cellular uptake for AmS-IONPs was astrocytes > bEnd.3 > neurons. Accumulation of COOH-AmS-IONPs was minimal and similar in magnitude in different cell types. Magnetic field exposure enhanced cellular accumulation of both AmS- and COOH-AmS-IONPs. CONCLUSION: Both IONP compositions were nontoxic at concentrations below 100 µg/mL in all cell types examined. At doses above 100 µg/mL, neurons were more sensitive to AmS-IONPs, whereas astrocytes were more vulnerable toward COOH-AmS-IONPs. Toxicity appears to be dependent on the surface coating as opposed to the amount of iron-oxide present in the cell.
Assuntos
Portadores de Fármacos/farmacocinética , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/química , Silanos/farmacocinética , Análise de Variância , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Silanos/química , Silanos/farmacologiaRESUMO
Tannase (tannin acyl hydrolase) is an industrially important enzyme produced by a large number of fungi, which hydrolyzes the ester and depside bonds of gallotannins and gallic acid esters. In the present work, a tannase from Aspergillus oryzae has been cloned and expressed in Pichia pastoris. The catalytic activity of the recombinant enzyme was assayed. A secretory form of enzyme was made with the aid of Saccharomyces cerevisiae alpha-factor, and a simple procedure purification protocol yielded tannase in pure form. The productivity of secreted tannase achieved 7000 IU/L by fed-batch culture. Recombinant tannase had a molecular mass of 90 kDa, which consisted of two kinds of subunits linked by a disulfide bond(s). Our study is the first report on the heterologous expression of tannase suggesting that the P. pastoris system represents an attractive means of generating large quantities of tannase for both research and industrial purpose.