Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 65(7): 847-55, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27108305

RESUMO

Detection of antigen-specific CD8 cells frequently relies on the use of peptides that are predicted to bind to HLA Class I molecules or have been shown to induce immune responses. There is extensive knowledge on individual HLA alleles' peptide-binding requirements, and immunogenic peptides for many antigens have been defined. The 32 individual peptides that comprise the CEF peptide pool represent such well-defined peptide determinants for Cytomegalo-, Epstein-barr-, and Influenza virus. We tested the accuracy of these peptide recognition predictions on 42 healthy human donors that have been high-resolution HLA-typed. According to the predictions, 241 recall responses should have been detected in these donors. Actual testing showed that 36 (15 %) of the predicted CD8 cell responses occurred in the high frequency range, 41 (17 %) in mid-frequencies, and 45 (19 %) were at the detection limit. In 119 instances (49 %), the predicted peptides were not targeted by CD8 cells detectably. The individual CEF peptides were recognized in an unpredicted fashion in 57 test cases. Moreover, the frequency of CD8 cells responding to a single peptide did not reflect on the number of CD8 cells targeting other determinants on the same antigen. Thus, reliance on one or a few predicted peptides provides a rather inaccurate assessment of antigen-specific CD8 cell immunity, strongly arguing for the use of peptide pools for immune monitoring.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Monitorização Imunológica/métodos , Peptídeos/imunologia , Animais , Epitopos de Linfócito T/imunologia , Humanos
2.
Cells ; 7(5)2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29695103

RESUMO

One of the primary effector functions of immune cells is the killing of virus-infected or malignant cells in the body. Natural killer (NK) and CD8 effector T cells are specialized for this function. The gold standard for measuring such cell-mediated cytolysis has been the chromium release assay, in which the leakage of the radioactive isotope from damaged target cells is being detected. Flow cytometry-based single cell analysis of target cells has recently been established as a non-radioactive alternative. Here we introduce a target cell visualization assay (TVA) that applies similar target cell staining approaches as used in flow cytometry but based on single cell computer image analysis. Two versions of TVA are described here. In one, the decrease in numbers of calcein-stained, i.e., viable, target cells is assessed. In the other, the CFSE/PI TVA, the increase in numbers of dead target cells is established in addition. TVA assays are shown to operate with the same sensitivity as standard chromium release assays, and, leaving data audit trails in form of scanned (raw), analyzed, and quality-controlled images, thus meeting requirements for measuring cell-mediated cytolysis in a regulated environment.

3.
Cells ; 6(4)2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215584

RESUMO

Testing of peripheral blood mononuclear cells (PBMC) for immune monitoring purposes requires verification of their functionality. This is of particular concern when the PBMC have been shipped or stored for prolonged periods of time. While the CEF (Cytomegalo-, Epstein-Barr and Flu-virus) peptide pool has become the gold standard for testing CD8 cell functionality, a positive control for CD4 cells is so far lacking. The latter ideally consists of proteins so as to control for the functionality of the antigen processing and presentation compartments, as well. Aiming to generate a positive control for CD4 cells, we first selected 12 protein antigens from infectious/environmental organisms that are ubiquitous: Varicella, Influenza, Parainfluenza, Mumps, Cytomegalovirus, Streptococcus, Mycoplasma, Lactobacillus, Neisseria, Candida, Rubella, and Measles. Of these antigens, three were found to elicited interferon (IFN)-γ-producing CD4 cells in the majority of human test subjects: inactivated cytomegalo-, parainfluenza-, and influenza virions (CPI). While individually none of these three antigens triggered a recall response in all donors, the pool of the three (the 'CPI pool'), did. One hundred percent of 245 human donors tested were found to be CPI positive, including Caucasians, Asians, and African-Americans. Therefore, the CPI pool appears to be suitable to serve as universal positive control for verifying the functionality of CD4 and of antigen presenting cells.

4.
Cells ; 4(1): 40-55, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25585298

RESUMO

As soon as Peripheral Blood Mononuclear Cells (PBMC) are isolated from whole blood, some cells begin dying. The rate of apoptotic cell death is increased when PBMC are shipped, cryopreserved, or stored under suboptimal conditions. Apoptotic cells secrete cytokines that suppress inflammation while promoting phagocytosis. Increased numbers of apoptotic cells in PBMC may modulate T cell functions in antigen-triggered T cell assays. We assessed the effect of apoptotic bystander cells on a T cell ELISPOT assay by selectively inducing B cell apoptosis using α-CD20 mAbs. The presence of large numbers of apoptotic B cells did not affect T cell functionality. In contrast, when PBMC were stored under unfavorable conditions, leading to damage and apoptosis in the T cells as well as bystander cells, T cell functionality was greatly impaired. We observed that measuring the number of apoptotic cells before plating the PBMC into an ELISPOT assay did not reflect the extent of PBMC injury, but measuring apoptotic cell frequencies at the end of the assay did. Our data suggest that measuring the numbers of apoptotic cells prior to and post T cell assays may provide more stringent PBMC quality acceptance criteria than measurements done only prior to the start of the assay.

5.
Cells ; 4(1): 71-83, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25643292

RESUMO

Comprehensive immune monitoring requires that frequencies of T cells, producing different cytokines, are measured to establish the magnitude of Th1, Th2, and Th17 components of cell-mediated immunity. Antigen titration provides additional information about the affinity of T cell response. In tumor immunity, it is also advisable to account for determinant spreading by testing multiple epitopes. Efforts for comprehensive immune monitoring would require substantial numbers of PBMC to run the above tests systematically, which in most test cases is limiting. Immune monitoring with ELISPOT assays have been performed, thus far, in a 96-well format. In this study we show that one can increase cell utilization by performing the assay in 384-well plates whose membrane surface area is one third that of 96-well plates. Systematic testing of PBMC for antigen-specific T cell response in the two formats demonstrated that the 384-well assay corresponds to a one-in-three miniaturization of the 96-well assay. The lowest number of cells that can be used in the 384-well format, while allowing for sufficient contact with APC, is 33,000 PBMC/well. Therefore, with one million PBMC typically obtained from 1 mL of blood, a 30 well T cell ELISPOT assay can be performed in a 384-well format.

6.
Viruses ; 7(8): 4414-37, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26258786

RESUMO

Most humans become infected with human cytomegalovirus (HCMV). Typically, the immune system controls the infection, but the virus persists and can reactivate in states of immunodeficiency. While substantial information is available on the contribution of CD8 T cells and antibodies to anti-HCMV immunity, studies of the TH1, TH2, and TH17 subsets have been limited by the low frequency of HCMV-specific CD4 T cells in peripheral blood mononuclear cell (PBMC). Using the enzyme-linked Immunospotr assay (ELISPOT) that excels in low frequency measurements, we have established these in a sizable cohort of healthy HCMV controllers. Cytokine recall responses were seen in all seropositive donors. Specifically, interferon (IFN)- and/or interleukin (IL)-17 were seen in isolation or with IL-4 in all test subjects. IL-4 recall did not occur in isolation. While the ratios of TH1, TH2, and TH17 cells exhibited substantial variations between different individuals these ratios and the frequencies were relatively stable when tested in samples drawn up to five years apart. IFN- and IL-2 co-expressing polyfunctional cells were seen in most subjects. Around half of the HCMV-specific CD4 cells were in a reversible state of exhaustion. The data provided here established the TH1, TH2, and TH17 characteristic of the CD4 cells that convey immune protection for successful immune surveillance against which reactivity can be compared when the immune surveillance of HCMV fails.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Portador Sadio/imunologia , Portador Sadio/virologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Citomegalovirus/imunologia , Subpopulações de Linfócitos T/imunologia , ELISPOT , Voluntários Saudáveis , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Interleucina-4/metabolismo , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Latência Viral
7.
Cells ; 4(1): 56-70, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25612115

RESUMO

Each positive well in ELISPOT assays contains spots of variable sizes that can range from tens of micrometers up to a millimeter in diameter. Therefore, when it comes to counting these spots the decision on setting the lower and the upper spot size thresholds to discriminate between non-specific background noise, spots produced by individual T cells, and spots formed by T cell clusters is critical. If the spot sizes follow a known statistical distribution, precise predictions on minimal and maximal spot sizes, belonging to a given T cell population, can be made. We studied the size distributional properties of IFN-γ, IL-2, IL-4, IL-5 and IL-17 spots elicited in ELISPOT assays with PBMC from 172 healthy donors, upon stimulation with 32 individual viral peptides representing defined HLA Class I-restricted epitopes for CD8 cells, and with protein antigens of CMV and EBV activating CD4 cells. A total of 334 CD8 and 80 CD4 positive T cell responses were analyzed. In 99.7% of the test cases, spot size distributions followed Log Normal function. These data formally demonstrate that it is possible to establish objective, statistically validated parameters for counting T cell ELISPOTs.

8.
Cells ; 4(1): 21-39, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25585297

RESUMO

The primary goal of immune monitoring with ELISPOT is to measure the number of T cells, specific for any antigen, accurately and reproducibly between different laboratories. In ELISPOT assays, antigen-specific T cells secrete cytokines, forming spots of different sizes on a membrane with variable background intensities. Due to the subjective nature of judging maximal and minimal spot sizes, different investigators come up with different numbers. This study aims to determine whether statistics-based, automated size-gating can harmonize the number of spot counts calculated between different laboratories. We plated PBMC at four different concentrations, 24 replicates each, in an IFN-γ ELISPOT assay with HCMV pp65 antigen. The ELISPOT plate, and an image file of the plate was counted in nine different laboratories using ImmunoSpot® Analyzers by (A) Basic Count™ relying on subjective counting parameters set by the respective investigators and (B) SmartCount™, an automated counting protocol by the ImmunoSpot® Software that uses statistics-based spot size auto-gating with spot intensity auto-thresholding. The average coefficient of variation (CV) for the mean values between independent laboratories was 26.7% when counting with Basic Count™, and 6.7% when counting with SmartCount™. Our data indicates that SmartCount™ allows harmonization of counting ELISPOT results between different laboratories and investigators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA