Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 624(7991): 303-308, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092910

RESUMO

Rubbers reinforced with rigid particles are used in high-volume applications, including tyres, dampers, belts and hoses1. Many applications require high modulus to resist excessive deformation and high fatigue threshold to resist crack growth under cyclic load. The particles are known to greatly increase modulus but not fatigue threshold. For example, adding carbon particles to natural rubber increases its modulus by one to two orders of magnitude1-3, but its fatigue threshold, reinforced or not, has remained approximately 100 J m-2 for decades4-7. Here we amplify the fatigue threshold of particle-reinforced rubbers by multiscale stress deconcentration. We synthesize a rubber in which highly entangled long polymers strongly adhere with rigid particles. At a crack tip, stress deconcentrates across two length scales: first through polymers and then through particles. This rubber achieves a fatigue threshold of approximately 1,000 J m-2. Mounts and grippers made of this rubber bear high loads and resist crack growth over repeated operation. Multiscale stress deconcentration expands the space of materials properties, opening doors to curtailing polymer pollution and building high-performance soft machines.

2.
Proc Natl Acad Sci U S A ; 121(16): e2322684121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588426

RESUMO

Many composites consist of matrices of elastomers and nanoparticles of stiff materials. Such composites often have superior properties and are widely used. Embedding elastomers with nanoparticles commonly necessitates intense shear, using machines like extruders and roll millers, which cut polymer chains and degrade properties. Here, we prepare a rubber-glass nanocomposite by using two aqueous emulsions. Each emulsion is separately prepared with a single species of polymer chains. Each polymer chain is copolymerized with a small amount of silane coupling agent. Upon mixing the two emulsions, as water evaporates, the glassy particles retain the shape, and the rubbery particles change shape to form a continuous matrix. Subsequently, the silane coupling agent condensates, which cross-links the rubbery chains and interlinks the rubbery chains to the glassy particles. The cross-links and interlinks stabilize the nanostructure and lead to superior properties. The nanocomposite simultaneously achieves high modulus (~30 MPa), high toughness (~100 kJ m-2), and high fatigue threshold (~1,000 J m-2). The method of mixed emulsion is environmentally friendly and compatible with various open-air manufacturing processes, such as coat, cast, spray, print, and brush. Additionally, the silane coupling agent can interlink the nanocomposite to other materials. The method of mixed emulsion can be used to fabricate objects of complex shapes, fine features, and prescribed spatial variations of compositions.

3.
Proc Natl Acad Sci U S A ; 119(32): e2203962119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35858377

RESUMO

Biological tissues, such as cartilage, tendon, ligament, skin, and plant cell wall, simultaneously achieve high water content and high load-bearing capacity. The high water content enables the transport of nutrients and wastes, and the high load-bearing capacity provides structural support for the organisms. These functions are achieved through nanostructures. This biological fact has inspired synthetic mimics, but simultaneously achieving both functions has been challenging. The main difficulty is to construct nanostructures of high load-bearing capacity, characterized by multiple properties, including elastic modulus, strength, toughness, and fatigue threshold. Here we develop a process that self-assembles a nanocomposite using a hydrogel-forming polymer and a glass-forming polymer. The process separates the polymers into a hydrogel phase and a glass phase. The two phases arrest at the nanoscale and are bicontinuous. Submerged in water, the nanocomposite maintains the structure and resists further swelling. We demonstrate the process using commercial polymers, achieving high water content, as well as load-bearing capacity comparable to that of polyethylene. During the process, a rubbery stage exists, enabling us to fabricate objects of complex shapes and fine features. We conduct further experiments to discuss likely molecular origins of arrested phase separation, swell resistance, and ductility. Potential applications of the nanocomposites include artificial tissues, high-pressure filters, low-friction coatings, and solid electrolytes.


Assuntos
Nanocompostos , Água , Suporte de Carga , Hidrogéis/química , Nanocompostos/química , Polímeros/química
4.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35064088

RESUMO

Sensing technology is under intense development to enable the Internet of everything and everyone in new and useful ways. Here we demonstrate a method of stretchable and self-powered temperature sensing. The basic sensing element consists of three layers: an electrolyte, a dielectric, and an electrode. The electrolyte/dielectric interface accumulates ions, and the dielectric/electrode interface accumulates electrons (in either excess or deficiency). The ions and electrons at the two interfaces are usually not charge-neutral, and this charge imbalance sets up an ionic cloud in the electrolyte. The design functions as a charged temperature-sensitive capacitor. When temperature changes, the ionic cloud changes thickness, and the electrode changes open-circuit voltage. We demonstrate high sensitivity (∼1 mV/K) and fast response (∼10 ms). Such temperature sensors can be made small, stable, and transparent. Depending on the arrangement of the electrolyte, dielectric, and electrode, we develop four designs for the temperature sensor. In addition, the temperature sensor has good linearity in the range of tens of Kelvin. We further show that the temperature sensors can be integrated into stretchable electronics and soft robots.

5.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34264848

RESUMO

During operations, surgical mesh is commonly fixed on tissues through fasteners such as sutures and staples. Attributes of surgical mesh include biocompatibility, flexibility, strength, and permeability, but sutures and staples may cause stress concentration and tissue damage. Here, we show that the functions of surgical mesh can be significantly broadened by developing a family of materials called hydrogel-mesh composites (HMCs). The HMCs retain all the attributes of surgical mesh and add one more: adhesion to tissues. We fabricate an HMC by soaking a surgical mesh with a precursor, and upon cure, the precursor forms a polymer network of a hydrogel, in macrotopological entanglement with the fibers of the surgical mesh. In a surgery, the HMC is pressed onto a tissue, and the polymers in the hydrogel form covalent bonds with the tissue. To demonstrate the concept, we use a poly(N-isopropylacrylamide) (PNIPAAm)/chitosan hydrogel and a polyethylene terephthalate (PET) surgical mesh. In the presence a bioconjugation agent, the chitosan and the tissue form covalent bonds, and the adhesion energy reaches above 100 J⋅m-2 At body temperature, PNIPAAm becomes hydrophobic, so that the hydrogel does not swell and the adhesion is stable. Compared with sutured surgical mesh, the HMC distributes force over a large area. In vitro experiments are conducted to study the application of HMCs to wound closure, especially on tissues under high mechanical stress. The performance of HMCs on dynamic living tissues is further investigated in the surgery of a sheep.


Assuntos
Hidrogéis/farmacologia , Telas Cirúrgicas , Cicatrização , Animais , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/patologia , Feminino , Fígado/efeitos dos fármacos , Fígado/patologia , Ovinos , Adesivos Teciduais/farmacologia , Cicatrização/efeitos dos fármacos
6.
Soft Matter ; 19(31): 5956-5966, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490335

RESUMO

Many polymer networks are prepared by crosslinking polymer chains. The polymer chains and crosslinkers are commonly mixed in internal mixers or roll mills. These intense processes break the polymer chains, lower viscosity, and ease mixing. The resulting polymer networks have short chains and a fatigue threshold of ∼100 J m-2. Here, we show that a low-intensity process, a combination of kneading and annealing, preserves long chains, leading to a network of polybutadiene to achieve a fatigue threshold of 440 J m-2. In a network, each chain has multiple crosslinks, which divides the chain into multiple strands. At the ends of the chain are two dangling strands that do not bear the load. The larger the number of crosslinks per chain, the lower the fraction of dangling strands. High fatigue threshold requires long strands, as well as a low fraction of dangling strands. Once intense mixing cuts chains short, each short chain can only have a few crosslinks; the strands are short and the fraction of dangling strands is high-both lower the fatigue threshold. By contrast, a low-intensity mixing process preserves long chains, which can have many crosslinks; the strands are long and the fraction of dangling strands is low-both increase the fatigue threshold. It is hoped that this work will aid the development of fatigue-resistant elastomers.

7.
Soft Matter ; 19(48): 9489-9495, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38031662

RESUMO

Water dissolves a hydrophilic polymer, but not a hydrophobic polymer. Many monomers of hydrophilic polymers, however, are amphiphilic, with a hydrophobic vinyl group for radical polymerization, as well as a hydrophilic group. Consequently, such an amphiphilic monomer may form solutions with both water and hydrophobic polymers. Ternary mixtures of amphiphilic monomer, hydrophobic polymer, and water have recently been used as precursors for interpenetrating polymer networks of hydrophilic polymers and hydrophobic polymers of unusual properties. However, the phase behavior of the ternary mixtures of amphiphilic monomer, hydrophobic polymer, and water themselves has not been studied. Here we mix the amphiphilic monomer acrylic acid, the hydrophobic polymer poly(methyl methacrylate), and water. In the mixture, the hydrophobic polymer can form various morphologies, including solution, micelle, gel, and polymer glass. We interpret these findings by invoking that the hydrophobic and hydrophilic groups of the amphiphilic monomer enable it to function as a bridge. That is, the hydrophobic functional group binds with the hydrophobic polymer, and the hydrophilic functional group binds with water. This picture leads to a simple modification to the Flory-Huggins theory, which agrees well with our experimental data. Amphiphilic monomers offer a rich area for further study for scientific insight, as well as for expanding opportunities to develop materials of self-assembled structures with unusual properties.

8.
Small ; 18(3): e2103882, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851012

RESUMO

The eye converts an optical signal to an ionic signal. This transduction is mimicked here using a photodiode in contact with ionic conductors, such as hydrogels. Photons generate electron-hole pairs in the photodiode. The photodiode/hydrogel interface forms capacitive coupling so that movements of electrons and holes in the photodiode induce movements of ions in the hydrogels. The hydrogels can be readily made stretchable and biocompatible to mimic the function of nerves. When light is turned on and off, the voltage between the hydrogels responds within 10 ms, comparable to the response in the human eye. A photosensitive skin is demonstrated to generate a voltage in response to light but not to stretch. Furthermore, a photosensitive actuation is demonstrated to mimic the light-triggered reflex, such as blinking of the eye and camouflage of the skin. Optoionic transduction has potential applications for wearable devices, implantable devices, and robotics.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Hidrogéis , Íons , Movimento , Próteses e Implantes
9.
Soft Matter ; 18(15): 2992-3003, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35353107

RESUMO

An elastomeric seal needs to be soft to accommodate installation but stiff to block fluid flow. Here we show that the two requirements are better fulfilled by a strain-stiffening elastomer than a neo-Hookean elastomer. We represent the strain-stiffening elastomer using the Gent model, and calculate the deformation in the elastomeric seal using an approach analogous to the lubrication theory of a viscous fluid between rigid walls. We determine the sealing pressure on the basis of two modes of leak. The seal leaks by elastic deformation when the fluid pressure exceeds the contact pressure between the seal and the rigid wall. The seal leaks by rupture when the energy release rate of a crack exceeds the toughness of the elastomer. For both modes of leak, a strain-stiffening elastomer enhances the sealing pressure compared to a neo-Hookean elastomer. We construct diagrams in which the two modes of leak are demarcated. It is hoped that this study will aid in the development of materials and geometries of seals.

10.
Proc Natl Acad Sci U S A ; 116(13): 5967-5972, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850517

RESUMO

In materials of all types, hysteresis and toughness are usually correlated. For example, a highly stretchable elastomer or hydrogel of a single polymer network has low hysteresis and low toughness. The single network is commonly toughened by introducing sacrificial bonds, but breaking and possibly reforming the sacrificial bonds causes pronounced hysteresis. In this paper, we describe a principle of stretchable materials that disrupt the toughness-hysteresis correlation, achieving both high toughness and low hysteresis. We demonstrate the principle by fabricating a composite of two constituents: a matrix of low elastic modulus, and fibers of high elastic modulus, with strong adhesion between the matrix and the fibers, but with no sacrificial bonds. Both constituents have low hysteresis (5%) and low toughness (300 J/m2), whereas the composite retains the low hysteresis but achieves high toughness (10,000 J/m2). Both constituents are prone to fatigue fracture, whereas the composite is highly fatigue resistant. We conduct experiment and computation to ascertain that the large modulus contrast alleviates stress concentration at the crack front, and that strong adhesion binds the fibers and the matrix and suppresses sliding between them. Stretchable materials of high toughness and low hysteresis provide opportunities to the creation of high-cycle and low-dissipation soft robots and soft human-machine interfaces.

11.
Proc Natl Acad Sci U S A ; 116(16): 7750-7759, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30923120

RESUMO

Although soft devices (grippers, actuators, and elementary robots) are rapidly becoming an integral part of the broad field of robotics, autonomy for completely soft devices has only begun to be developed. Adaptation of conventional systems of control to soft devices requires hard valves and electronic controls. This paper describes completely soft pneumatic digital logic gates having a physical scale appropriate for use with current (macroscopic) soft actuators. Each digital logic gate utilizes a single bistable valve-the pneumatic equivalent of a Schmitt trigger-which relies on the snap-through instability of a hemispherical membrane to kink internal tubes and operates with binary high/low input and output pressures. Soft, pneumatic NOT, AND, and OR digital logic gates-which generate known pneumatic outputs as a function of one, or multiple, pneumatic inputs-allow fabrication of digital logic circuits for a set-reset latch, two-bit shift register, leading-edge detector, digital-to-analog converter (DAC), and toggle switch. The DAC and toggle switch, in turn, can control and power a soft actuator (demonstrated using a pneu-net gripper). These macroscale soft digital logic gates are scalable to high volumes of airflow, do not consume power at steady state, and can be reconfigured to achieve multiple functionalities from a single design (including configurations that receive inputs from the environment and from human users). This work represents a step toward a strategy to develop autonomous control-one not involving an electronic interface or hard components-for soft devices.

12.
Nano Lett ; 20(6): 4580-4587, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32412245

RESUMO

Manipulating charges is fundamental to numerous systems, and this ability is achieved through materials of diverse characteristics. Electrets are dielectrics that trap charges or dipoles. Applications include electrophotography, microphones, air filters, and energy harvesters. To trap charges or dipoles for a long time, electrets are commonly made of hard dielectrics. Stretchable dielectrics are short-lived electrets. The two properties, longevity and stretchability, conflict; existing electrets struggle to attain both. This work describes an approach to developing stretchable electrets. Nanoparticles of a hard electret are immobilized in a matrix of dielectric elastomer. The composite divides the labor of two functions: the particles trap charges with longevity, and the matrix enables stretchability. The design considerably broadens the choice of materials to enable stretchable electrets. Silica nanoparticles in the polydimethylsiloxane elastomer achieve a charge density ∼ 4 × 10-5 C m-2 and a lifetime beyond 60 days. Long-lived, stretchable electrets open extensive opportunities.

13.
Nano Lett ; 20(1): 224-233, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31775509

RESUMO

Incorporation of elastomers into bioelectronics that reduces the mechanical mismatch between electronics and biological systems could potentially improve the long-term electronics-tissue interface. However, the chronic stability of elastomers in physiological conditions has not been systematically studied. Here, using electrochemical impedance spectrum we find that the electrochemical impedance of dielectric elastomers degrades over time in physiological environments. Both experimental and computational results reveal that this phenomenon is due to the diffusion of ions from the physiological solution into elastomers over time. Their conductivity increases by 6 orders of magnitude up to 10-8 S/m. When the passivated conductors are also composed of intrinsically stretchable materials, higher leakage currents can be detected. Scaling analyses suggest fundamental limitations to the electrical performances of interconnects made of stretchable materials.


Assuntos
Elastômeros , Impedância Elétrica , Eletrônica
14.
Small ; 15(21): e1804651, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30990971

RESUMO

Fabricating a strain sensor that can detect large deformation over a curved object with a high sensitivity is crucial in wearable electronics, human/machine interfaces, and soft robotics. Herein, an ionogel nanocomposite is presented for this purpose. Tuning the composition of the ionogel nanocomposites allows the attainment of the best features, such as excellent self-healing (>95% healing efficiency), strong adhesion (347.3 N m-1 ), high stretchability (2000%), and more than ten times change in resistance under stretching. Furthermore, the ionogel nanocomposite-based sensor exhibits good reliability and excellent durability after 500 cycles, as well as a large gauge factor of 20 when it is stretched under a strain of 800-1400%. Moreover, the nanocomposite can self-heal under arduous conditions, such as a temperature as low as -20 °C and a temperature as high as 60 °C. All these merits are achieved mainly due to the integration of dynamic metal coordination bonds inside a loosely cross-linked network of ionogel nanocomposite doped with Fe3 O4 nanoparticles.

15.
Phys Rev Lett ; 122(9): 098003, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932551

RESUMO

A material under compression often forms creases. When the material is elastic and soft, the nucleation of creases depends on both elasticity and capillarity. Here we introduce a model of elastocapillary creases. The model assumes that the surface tension remains constant on the free surface, but may change upon self-contact. In particular, surface tension vanishes upon self-contact for a pristine surface of elastomers and gels. The model predicts that the nucleation of creases depends on the sizes of surface defects relative to the elastocapillary length, and happens over a well-defined range of strains, instead of a specific strain. The loss of surface tension upon self-contact lowers the energy barrier for nucleation, and widens the range of nucleation strains for materials of any thickness relative to the elastocapillary length. We test this model by conducting experiments with materials of various elastocapillary lengths, along with the data available in the literature.

16.
Macromol Rapid Commun ; 40(8): e1800883, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30740821

RESUMO

New applications of hydrogels draw growing attention to the development of tough hydrogels. Most tough hydrogels are designed through incorporating large energy dissipation from breaking sacrificial bonds. However, these hydrogels still fracture under prolonged cyclic loads with the presence of even small flaws. This paper presents a principle of flaw-insensitive hydrogels under both static and cyclic loads. The design aligns the polymer chains in a hydrogel at the molecular level to deflect a crack. To demonstrate this principle, a hydrogel of polyacrylamide and polyvinyl alcohol is prepared with aligned crystalline domains. When the hydrogel is stretched in the direction of alignment, an initial flaw deflects, propagates along the loading direction, peels off the material, and leaves the hydrogel flawless again. The hydrogel is insensitive to pre-existing flaws, even under more than ten thousand loading cycles. The critical degree of anisotropy to achieve crack deflection is quantified by experiments and fracture mechanics. The principle can be generalized to other hydrogel systems.


Assuntos
Resinas Acrílicas/química , Hidrogéis/química , Álcool de Polivinil/química , Anisotropia , Hidrogéis/síntese química , Teste de Materiais , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
17.
Soft Matter ; 14(18): 3563-3571, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29682668

RESUMO

Polyacrylamide hydrogels are highly stretchable and nearly elastic. Their stress-stretch curves exhibit small hysteresis, and change negligibly after many loading cycles. Polyacrylamide is used extensively in applications, and is the primary network for many types of tough hydrogels. Recent experiments have shown that polyacrylamide hydrogels are susceptible to fatigue fracture, but available data are limited. Here we study fatigue fracture of polyacrylamide hydrogels of various water contents. We form polymer networks in all samples under the same conditions, and then obtain hydrogels of 96, 87, 78, and 69 wt% of water by solvent exchange. We measure the crack extension under cyclic loads, and the fracture energy under monotonic loading. For the hydrogels of the four water contents, the fatigue thresholds are 4.3, 8.4, 20.5, and 64.5 J m-2, and the fracture energies are 18.9, 71.2, 289, and 611 J m-2. The measured thresholds agree well with the predictions of the Lake-Thomas model for hydrogels of high water content, but not in the case of low water content. It is hoped that further basic studies will soon follow to aid the development of fatigue-resistant hydrogels.

18.
Soft Matter ; 14(42): 8545-8551, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30338335

RESUMO

An elastic bilayer composed of a stiff film bonded to a soft substrate forms wrinkles under compression. While these uniform and periodic wrinkles initially grow in amplitude with applied strain, the onset of secondary bifurcations such as period doubling typically limit the aspect ratio (i.e., amplitude divided by wavelength) of wrinkles that can be achieved. Here, we present a simple strategy that employs a supported bilayer with comparable thicknesses of the film and substrate to achieve wrinkles with higher aspect ratio. We use both experiments and finite element simulations to reveal that at small thickness contrast, period doubling can be delayed, allowing the wrinkles to grow uniformly to high aspect ratio. In addition, we show that the periodic wrinkles can evolve through symmetry breaking and transition to a periodic pattern of ridges with even higher aspect ratio.

19.
Nature ; 489(7414): 133-6, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22955625

RESUMO

Hydrogels are used as scaffolds for tissue engineering, vehicles for drug delivery, actuators for optics and fluidics, and model extracellular matrices for biological studies. The scope of hydrogel applications, however, is often severely limited by their mechanical behaviour. Most hydrogels do not exhibit high stretchability; for example, an alginate hydrogel ruptures when stretched to about 1.2 times its original length. Some synthetic elastic hydrogels have achieved stretches in the range 10-20, but these values are markedly reduced in samples containing notches. Most hydrogels are brittle, with fracture energies of about 10 J m(-2) (ref. 8), as compared with ∼1,000 J m(-2) for cartilage and ∼10,000 J m(-2) for natural rubbers. Intense efforts are devoted to synthesizing hydrogels with improved mechanical properties; certain synthetic gels have reached fracture energies of 100-1,000 J m(-2) (refs 11, 14, 17). Here we report the synthesis of hydrogels from polymers forming ionically and covalently crosslinked networks. Although such gels contain ∼90% water, they can be stretched beyond 20 times their initial length, and have fracture energies of ∼9,000 J m(-2). Even for samples containing notches, a stretch of 17 is demonstrated. We attribute the gels' toughness to the synergy of two mechanisms: crack bridging by the network of covalent crosslinks, and hysteresis by unzipping the network of ionic crosslinks. Furthermore, the network of covalent crosslinks preserves the memory of the initial state, so that much of the large deformation is removed on unloading. The unzipped ionic crosslinks cause internal damage, which heals by re-zipping. These gels may serve as model systems to explore mechanisms of deformation and energy dissipation, and expand the scope of hydrogel applications.


Assuntos
Hidrogéis/química , Resinas Acrílicas/química , Alginatos/química , Sequência de Carboidratos , Elasticidade , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Hidrogéis/síntese química , Teste de Materiais , Dados de Sequência Molecular , Polímeros/síntese química , Polímeros/química
20.
Proc Natl Acad Sci U S A ; 112(40): 12332-7, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392537

RESUMO

Next-generation flexible electronics require highly stretchable and transparent electrodes. Few electronic conductors are both transparent and stretchable, and even fewer can be cyclically stretched to a large strain without causing fatigue. Fatigue, which is often an issue of strained materials causing failure at low strain levels of cyclic loading, is detrimental to materials under repeated loads in practical applications. Here we show that optimizing topology and/or tuning adhesion of metal nanomeshes can significantly improve stretchability and eliminate strain fatigue. The ligaments in an Au nanomesh on a slippery substrate can locally shift to relax stress upon stretching and return to the original configuration when stress is removed. The Au nanomesh keeps a low sheet resistance and high transparency, comparable to those of strain-free indium tin oxide films, when the nanomesh is stretched to a strain of 300%, or shows no fatigue after 50,000 stretches to a strain up to 150%. Moreover, the Au nanomesh is biocompatible and penetrable to biomacromolecules in fluid. The superstretchable transparent conductors are highly desirable for stretchable photoelectronics, electronic skins, and implantable electronics.


Assuntos
Condutividade Elétrica , Eletrônica/instrumentação , Metais/química , Nanoestruturas/química , Animais , Técnicas de Cultura de Células/instrumentação , Proliferação de Células , Células Cultivadas , Eletrodos , Embrião de Mamíferos/citologia , Desenho de Equipamento , Fibroblastos/fisiologia , Ouro/química , Camundongos , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Maleabilidade , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA