Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 204(3): 611-621, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31871024

RESUMO

Coxiella burnetii is an obligate intracellular bacterium and the causative agent of Q fever. C. burnetii is considered a potential bioterrorism agent because of its low infectious dose; resistance to heat, drying, and common disinfectants; and lack of prophylactic therapies. Q-Vax, a formalin-inactivated whole-bacteria vaccine, is currently the only prophylactic measure that is protective against C. burnetii infections but is not U.S. Food and Drug Administration approved. To overcome the safety concerns associated with the whole-bacteria vaccine, we sought to generate and evaluate recombinant protein subunit vaccines against C. burnetii To accomplish this, we formulated C. burnetii Ags with a novel TLR triagonist adjuvant platform, which used combinatorial chemistry to link three different TLR agonists together to form one adjuvanting complex. We evaluated the immunomodulatory activity of a panel of TLR triagonist adjuvants and found that they elicited unique Ag-specific immune responses both in vitro and in vivo. We evaluated our top candidates in a live C. burnetii aerosol challenge model in C56BL/6 mice and found that several of our novel vaccine formulations conferred varying levels of protection to the challenged animals compared with sham immunized mice, although none of our candidates were as protective as the commercial vaccine across all protection criteria that were analyzed. Our findings characterize a novel adjuvant platform and offer an alternative approach to generating protective and effective vaccines against C. burnetii.


Assuntos
Vacinas Bacterianas/imunologia , Coxiella burnetii/fisiologia , Febre Q/imunologia , Receptores Toll-Like/agonistas , Adjuvantes Imunológicos , Animais , Vacinas Bacterianas/síntese química , Técnicas de Química Combinatória , Modelos Animais de Doenças , Feminino , Humanos , Imunidade , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos C57BL , Vacinas de Subunidades Antigênicas
2.
PLoS Pathog ; 9(11): e1003776, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278022

RESUMO

The mechanisms by which human immunodeficiency virus type 1 (HIV-1) crosses mucosal surfaces to establish infection are unknown. Acidic genital secretions of HIV-1-infected women contain HIV-1 likely coated by antibody. We found that the combination of acidic pH and Env-specific IgG, including that from cervicovaginal and seminal fluids of HIV-1-infected individuals, augmented transcytosis across epithelial cells as much as 20-fold compared with Env-specific IgG at neutral pH or non-specific IgG at either pH. Enhanced transcytosis was observed with clinical HIV-1 isolates, including transmitted/founder strains, and was eliminated in Fc neonatal receptor (FcRn)-knockdown epithelial cells. Non-neutralizing antibodies allowed similar or less transcytosis than neutralizing antibodies. However, the ratio of total:infectious virus was higher for neutralizing antibodies, indicating that they allowed transcytosis while blocking infectivity of transcytosed virus. Immunocytochemistry revealed abundant FcRn expression in columnar epithelia lining the human endocervix and penile urethra. Acidity and Env-specific IgG enhance transcytosis of virus across epithelial cells via FcRn and could facilitate translocation of virus to susceptible target cells following sexual exposure.


Assuntos
Células Epiteliais/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Imunoglobulina G/imunologia , Receptores Fc/imunologia , Transcitose/imunologia , Linhagem Celular Tumoral , Colo do Útero/imunologia , Colo do Útero/patologia , Colo do Útero/virologia , Células Epiteliais/patologia , Feminino , HIV-1/patogenicidade , Humanos , Concentração de Íons de Hidrogênio , Masculino , Sêmen/imunologia , Uretra/imunologia , Uretra/patologia , Uretra/virologia
3.
Front Immunol ; 14: 1192821, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533862

RESUMO

Vaccines are among the most cost-effective public health measures for controlling infectious diseases. Coxiella burnetii is the etiological agent of Q fever, a disease with a wide clinical spectrum that ranges from mild symptoms, such as fever and fatigue, to more severe disease, such as pneumonia and endocarditis. The formalin-inactivated whole-cell vaccine Q-VAX® contains hundreds of antigens and confers lifelong protection in humans, but prior sensitization from infection or vaccination can result in deleterious reactogenic responses to vaccination. Consequently, there is great interest in developing non-reactogenic alternatives based on adjuvanted recombinant proteins. In this study, we aimed to develop a multivalent vaccine that conferred protection with reduced reactogenicity. We hypothesized that a multivalent vaccine consisting of multiple antigens would be more immunogenic and protective than a monovalent vaccine owing to the large number of potential protective antigens in the C. burnetii proteome. To address this, we identified immunogenic T and B cell antigens, and selected proteins were purified to evaluate with a combination adjuvant (IVAX-1), with or without C. burnetii lipopolysaccharide (LPS) in immunogenicity studies in vivo in mice and in a Hartley guinea pig intratracheal aerosol challenge model using C. burnetii strain NMI RSA 493. The data showed that multivalent vaccines are more immunogenic than monovalent vaccines and more closely emulate the protection achieved by Q-VAX. Although six antigens were the most immunogenic, we also discovered that multiplexing beyond four antigens introduces detectable reactogenicity, indicating that there is an upper limit to the number of antigens that can be safely included in a multivalent Q-fever vaccine. C. burnetii LPS also demonstrates efficacy as a vaccine antigen in conferring protection in an otherwise monovalent vaccine formulation, suggesting that its addition in multivalent vaccines, as demonstrated by a quadrivalent formulation, would improve protective responses.


Assuntos
Coxiella burnetii , Humanos , Cobaias , Animais , Camundongos , Vacinas Combinadas , Lipopolissacarídeos , Vacinas Bacterianas , Antígenos , Adjuvantes Imunológicos , Aerossóis
4.
J Vis Exp ; (149)2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31403629

RESUMO

The influenza virus remains a significant cause of mortality worldwide due to the limited effectiveness of currently available vaccines. A key challenge to the development of universal influenza vaccines is high antigenic diversity resulting from antigenic drift. Overcoming this challenge requires novel research tools to measure the breadth of serum antibodies directed against many virus strains across different antigenic subtypes. Here, we present a protocol for analyzing the breadth of serum antibodies against diverse influenza virus strains using a protein microarray of influenza antigens. This influenza antigen microarray is constructed by printing purified hemagglutinin and neuraminidase antigens onto a nitrocellulose-coated membrane using a microarray printer. Human sera are incubated on the microarray to bind antibodies against the influenza antigens. Quantum-dot-conjugated secondary antibodies are used to simultaneously detect IgG and IgA antibodies binding to each antigen on the microarray. Quantitative antibody binding is measured as fluorescence intensity using a portable imager. Representative results are shown to demonstrate assay reproducibility in measuring subtype-specific and cross-reactive influenza antibodies in human sera. Compared to traditional methods such as ELISA, the influenza antigen microarray provides a high throughput multiplexed approach capable of testing hundreds of sera for multiple antibody isotypes against hundreds of antigens in a short time frame, and thus has applications in sero-surveillance and vaccine development. A limitation is the inability to distinguish binding antibodies from neutralizing antibodies.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Influenza Humana/imunologia , Análise Serial de Proteínas/métodos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Estudos de Coortes , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vacinas contra Influenza/imunologia , Neuraminidase/imunologia , Estudos Prospectivos , Reprodutibilidade dos Testes , Proteínas Virais/imunologia
5.
ACS Cent Sci ; 5(7): 1137-1145, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31403067

RESUMO

Traditional vaccination strategies have failed to generate effective vaccines for many infections like tuberculosis and HIV. New approaches are needed for each type of disease. The protective immunity and distinct responses of many successful vaccines come from activating multiple Toll-like receptors (TLRs). Vaccines with multiple TLRs as adjuvants have proven effective in preclinical studies, but current research has not explored two important elements. First, few multi-TLR systems explore spatial organization-a critical feature of whole-cell vaccines. Second, no multi-TLR systems to date provide systematic analysis of the combinatorial space of three TLR agonists. Here, we present the first examination of the combinatorial space of several spatially defined triple-TLR adjuvants, by synthesizing a series of five triple-TLR agonists and testing their innate activity both in vitro and in vivo. The combinations were evaluated by measuring activation of immune stimulatory genes (Nf-κB, ISGs), cytokine profiles (IL12-p70, TNF-α, IL-6, IL-10, CCL2, IFN-α, IFN-ß, IFN-γ), and in vivo cytokine serum levels (IL-6, TNF-α, IL12-p40, IFN-α, IFN-ß). We demonstrate that linking TLR agonists substantially alters the resulting immune response compared to their unlinked counterparts and that each combination results in a distinct immune response, particularly between linked combinations. We show that combinations containing a TLR9 agonist produce more Th1 biasing immune response profiles, and that the effect is amplified upon conjugation. However, combinations containing TLR2/6 agonist are skewed toward TH2 biasing profiles despite the presence of TLR9. These results demonstrate the profound effects that conjugation and combinatorial administration of TLR agonists can have on immune responses, a critical element of vaccine development.

6.
mSphere ; 3(6)2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30541779

RESUMO

Current seasonal influenza virus vaccines engender antibody-mediated protection that is hemagglutinin (HA) subtype specific and relatively short-lived. Coverage for other subtypes or even variants within a subtype could be improved from a better understanding of the factors that promote HA-specific antibody cross-reactivity. Current assays to evaluate cross-reactivity, such as the ELISA, require a separate test for each antigen and are neither high-throughput nor sample-sparing. To address this need, we produced an array of 283 purified HA proteins from influenza A virus subtypes H1 to H16 and H18 and influenza B virus. To evaluate performance, arrays were probed with sera from individuals before and after a booster dose of inactivated heterologous H5N1 vaccine and naturally infected cases at presentation and follow-up during the 2010 to 2011 influenza season, when H3N2 was prevalent. The response to the H5 vaccine boost was IgG only and confined to H5 variants. The response to natural H3N2 infection consisted of IgG and IgA and was reactive with all H3 variants displayed, as well as against other group 2 HA subtypes. In both groups, responses to HA1 proteins were subtype specific. In contrast, baseline signals were higher, and responses broader, against full-length HA proteins (HA1+HA2) compared to HA1 alone. We propose that these elevated baseline signals and breadth come from the recognition of conserved epitopes in the stalk domain by cross-reactive antibodies accumulated from previous exposure(s) to seasonal influenza virus. This array is a valuable high-throughput alternative to the ELISA for monitoring specificity and cross-reactivity of HA antibodies and has many applications in vaccine development.IMPORTANCE Seasonal influenza is a serious public health problem because the viral infection spreads easily from person to person and because of antigenic drift in neutralizing epitopes. Influenza vaccination is the most effective way to prevent the disease, although challenging because of the constant evolution of influenza virus subtypes. Our high-throughput protein microarrays allow for interrogation of subunit-specific IgG and IgA responses to 283 different HA proteins comprised of HA1 and HA2 domains as well as full-length HA proteins. This provides a tool that allows for novel insights into the response to exposure to influenza virus antigens. Data generated with our technology will enhance our understanding of the factors that improve the strength, breadth, and durability of vaccine-mediated immune responses and develop more effective vaccines.


Assuntos
Anticorpos Antivirais/imunologia , Reações Cruzadas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Análise Serial de Proteínas
7.
Am J Trop Med Hyg ; 95(2): 431-9, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27215295

RESUMO

Inexpensive, easy-to-use, and highly sensitive diagnostic tests are currently unavailable for typhoid fever. To identify candidate serodiagnostic markers, we have probed microarrays displaying the full Salmonella enterica serovar Typhi (S. Typhi) proteome of 4,352 different proteins + lipopolysaccharides (LPSs), with sera from Nigerian pediatric typhoid and other febrile cases, Nigerian healthy controls, and healthy U.S. adults. Nigerian antibody profiles were broad (∼500 seropositive antigens) and mainly low level, with a small number of stronger "hits," whereas the profile in U.S. adults was < 1/5 as broad, consistent with endemic exposure in Nigeria. Nigerian profiles were largely unaffected by clinical diagnosis, although the response against t1477 (hemolysin E) consistently emerged as stronger in typhoid cases. The response to LPS was also a strong discriminator of healthy controls and typhoid, although LPS did not discriminate between typhoid and nontyphoidal Salmonella (NTS) disease. As a first step toward the development of a point-of-care diagnostic, t1477 and LPS were evaluated on immunostrips. Both provided good discrimination between healthy controls and typhoid/NTS disease. Such a test could provide a useful screen for salmonellosis (typhoid and NTS disease) in suspected pediatric cases that present with undefined febrile disease.


Assuntos
Anticorpos Antibacterianos/análise , Antígenos de Bactérias/imunologia , Proteínas Hemolisinas/imunologia , Imunoglobulina A/análise , Imunoglobulina G/análise , Salmonella typhi/isolamento & purificação , Febre Tifoide/diagnóstico , Adulto , Anticorpos Antibacterianos/biossíntese , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Imunoensaio , Imunoglobulina A/biossíntese , Imunoglobulina G/biossíntese , Lactente , Lipopolissacarídeos/imunologia , Masculino , Nigéria , Proteômica/métodos , Fitas Reagentes , Salmonella typhi/imunologia , Febre Tifoide/imunologia , Febre Tifoide/microbiologia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA