Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Discov Nano ; 19(1): 34, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386138

RESUMO

In this article, we present a straightforward in-situ approach for producing Ag NPs incorporated in graphene oxide (GO) blended with glutaraldehyde (GA) cross-linked polyvinyl alcohol (PVA) matrix. Samples are γ-irradiated by doses of 2, 5, and 10 kGy and in comparison with the pristine films, the thermal conductivity ('k') and effusivity are measured. 'k' decreases with irradiation doses up to 5 kGy and further increase in the dosage results increase in 'k'. We performed FDTD modeling to verify the effect of polarization and periodicity on the absorptivity and emissivity spectra that are correlated to the 'k' and effusivity, empirically. Hence, we can confess that the structural properties of the prepared hybrid nanocomposite are manipulated by γ-irradiation. This attests that the PVA/GO-Ag/GA nanocomposite is radiation-sensitive and could be employed for thermal management systems. Moreover, their strong electrical insulation, as the measured dc conductivity of the γ-irradiated samples is found to be in the range of 2.66 × 10-8-4.319 × 10-7 Sm-1, which is below the percolation threshold of 1.0 × 10-6 Sm-1, demonstrates that they are excellent candidates for the use of thermal management materials. The low 'k' values allow us to use this promising material as thermal insulating substrates in microsensors and microsystems. They are also great choices for usage as wire and cable insulation in nuclear reactors due to their superior electrical insulation.

2.
ACS Omega ; 7(39): 35023-35034, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36211055

RESUMO

In the present work, gold (Au), silver (Ag), and copper (Cu) based mono- and bimetallic NPs are prepared using a cost-effective facile wet chemical route. The pH for the synthesis is optimized in accordance with the optical spectra and supported by the finite difference time domain simulation studies. FESEM and TEM micrographs are used to analyze the morphology of the prepared nanoparticles. TEM images of bimetallic nanoparticles (BMPs) verified their bimetallic nature. XRD studies confirmed the formation of fcc-structured mono- and bimetallic NPs. Photoluminescence studies of the as-synthesized NPs are in good agreement with the previous publications. These synthesized NPs showed enhanced catalytic activity for the reduction/degradation of 4-nitrophenol, rhodamine B, and indigo carmine dyes in the presence of sodium borohydride (NaBH4) compared to NaBH4 alone. For the reduction of 4-nitrophenol, Au, Cu, and CuAg nanoparticles exhibited good catalytic efficiency compared to others, whereas for the degradation of rhodamine B and indigo carmine dyes the catalytic efficiency is comparatively high for CuAg BMPs. Furthermore, the antibacterial assay is carried out, and Ag NPs display effective antibacterial activity against Klebsiella pneumoniae, Salmonella ser. Typhimurium, Acinetobacter baumannii, Shigella flexneri, and Pseudomonas aeruginosa.

3.
Nat Commun ; 9(1): 138, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29305591

RESUMO

The original version of this Article contained an error in ref. 27, which was incorrectly given with the wrong journal name as:Meyer, S. et al. Observation of the spin Nernst effect. Nat. Phys. 16, 977-981 (2017).The correct form of ref. 27 is:Meyer, S. et al. Observation of the spin Nernst effect. Nat. Mater. 16, 977-981 (2017).This has now been corrected in the PDF and HTML versions of the Article.

4.
Sci Rep ; 8(1): 11337, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054593

RESUMO

We investigated the temperature distribution induced by laser irradiation of ultrathin magnetic films by applying a finite element method (FEM) to the finite difference time domain (FDTD) representation for the analysis of thermal induced spin currents. The dependency of the thermal gradient (∇T) of ultrathin magnetic films on material parameters, including the reflectivity and absorption coefficient were evaluated by examining optical effects, which indicates that reflectance (R) and the apparent absorption coefficient (α*) play important roles in the calculation of ∇T for ultrathin layers. The experimental and calculated values of R and α* for the ultrathin magnetic layers irradiated by laser-driven heat sources estimated using the combined FDTD and FEM method are in good agreement for the amorphous CoFeB and crystalline Co layers of thicknesses ranging from 3~20 nm. Our results demonstrate that the optical parameters are crucial for the estimation of the temperature gradient induced by laser illumination for the study of thermally generated spin currents and related phenomena.

5.
Nat Commun ; 8(1): 1400, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123123

RESUMO

Electric generation of spin current via spin Hall effect is of great interest as it allows an efficient manipulation of magnetization in spintronic devices. Theoretically, pure spin current can be also created by a temperature gradient, which is known as spin Nernst effect. Here, we report spin Nernst effect-induced transverse magnetoresistance in ferromagnet/non-magnetic heavy metal bilayers. We observe that the magnitude of transverse magnetoresistance in the bilayers is significantly modified by heavy metal and its thickness. This strong dependence of transverse magnetoresistance on heavy metal evidences the generation of thermally induced pure spin current in heavy metal. Our analysis shows that spin Nernst angles of W and Pt have the opposite sign to their spin Hall angles. Moreover, our estimate implies that the magnitude of spin Nernst angle would be comparable to that of spin Hall angle, suggesting an efficient generation of spin current by the spin Nernst effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA