Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(3): 43, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349410

RESUMO

Breast cancer stands as a formidable global health challenge for women. While neoantigens exhibit efficacy in activating T cells specific to cancer and instigating anti-tumor immune responses, the accuracy of neoantigen prediction remains suboptimal. In this study, we identified neoantigens from the patient-derived breast cancer cells, PC-B-142CA and PC-B-148CA cells, utilizing whole-genome and RNA sequencing. The pVAC-Seq pipeline was employed, with minor modification incorporating criteria (1) binding affinity of mutant (MT) peptide with HLA (IC50 MT) ≤ 500 nm in 3 of 5 algorithms and (2) IC50 wild type (WT)/MT > 1. Sequencing results unveiled 2513 and 3490 somatic mutations, and 646 and 652 non-synonymous mutations in PC-B-142CA and PC-B-148CA, respectively. We selected the top 3 neoantigens to perform molecular dynamic simulation and synthesized 9-12 amino acid neoantigen peptides, which were then pulsed onto healthy donor peripheral blood mononuclear cells (PBMCs). Results demonstrated that T cells activated by ADGRL1E274K, PARP1E619K, and SEC14L2R43Q peptides identified from PC-B-142CA exhibited significantly increased production of interferon-gamma (IFN-γ), while PARP1E619K and SEC14L2R43Q peptides induced the expression of CD107a on T cells. The % tumor cell lysis was notably enhanced by T cells activated with MT peptides across all three healthy donors. Moreover, ALKBH6V83M and GAAI823T peptides from PC-B-148CA remarkably stimulated IFN-γ- and CD107a-positive T cells, displaying high cell-killing activity against target cancer cells. In summary, our findings underscore the successful identification of neoantigens with anti-tumor T cell functions and highlight the potential of personalized neoantigens as a promising avenue for breast cancer treatment.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Leucócitos Mononucleares , Linfócitos T , Algoritmos , Anticorpos
2.
Brain Pathol ; 34(1): e13203, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37574201

RESUMO

The 2021 WHO Classification of Central Nervous System Tumors recommended evaluation of cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletion in addition to codeletion of 1p/19q to characterize IDH-mutant gliomas. Here, we demonstrated the use of a nanopore-based copy-number variation sequencing (nCNV-seq) approach to simultaneously identify deletions of CDKN2A/B and 1p/19q. The nCNV-seq approach was initially evaluated on three distinct glioma cell lines and then applied to 19 IDH-mutant gliomas (8 astrocytomas and 11 oligodendrogliomas) from patients. The whole-arm 1p/19q codeletion was detected in all oligodendrogliomas with high concordance among nCNV-seq, FISH, DNA methylation profiling, and whole-genome sequencing. For the CDKN2A/B deletion, nCNV-seq detected the loss in both astrocytoma and oligodendroglioma, with strong correlation with the CNV profiles derived from whole-genome sequencing (Pearson correlation (r) = 0.95, P < 2.2 × 10-16 to r = 0.99, P < 2.2 × 10-16 ) and methylome profiling. Furthermore, nCNV-seq can differentiate between homozygous and hemizygous deletions of CDKN2A/B. Taken together, nCNV-seq holds promise as a new, alternative approach for a rapid and simultaneous detection of the molecular signatures of IDH-mutant gliomas without capital expenditure for a sequencer.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Sequenciamento por Nanoporos , Oligodendroglioma , Humanos , Oligodendroglioma/genética , Oligodendroglioma/patologia , Neoplasias Encefálicas/patologia , Mutação , Glioma/patologia , Astrocitoma/patologia , Isocitrato Desidrogenase/genética , Cromossomos Humanos Par 1 , Cromossomos Humanos Par 19
3.
Sci Rep ; 14(1): 9455, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658744

RESUMO

The Asian king vulture (AKV), a vital forest scavenger, is facing globally critical endangerment. This study aimed to construct a reference genome to unveil the mechanisms underlying its scavenger abilities and to assess the genetic relatedness of the captive population in Thailand. A reference genome of a female AKV was assembled from sequencing reads obtained from both PacBio long-read and MGI short-read sequencing platforms. Comparative genomics with New World vultures (NWVs) and other birds in the Family Accipitridae revealed unique gene families in AKV associated with retroviral genome integration and feather keratin, contrasting with NWVs' genes related to olfactory reception. Expanded gene families in AKV were linked to inflammatory response, iron regulation and spermatogenesis. Positively selected genes included those associated with anti-apoptosis, immune response and muscle cell development, shedding light on adaptations for carcass consumption and high-altitude soaring. Using restriction site-associated DNA sequencing (RADseq)-based genome-wide single nucleotide polymorphisms (SNPs), genetic relatedness and inbreeding status of five captive AKVs were determined, revealing high genomic inbreeding in two females. In conclusion, the AKV reference genome was established, providing insights into its unique characteristics. Additionally, the potential of RADseq-based genome-wide SNPs for selecting AKV breeders was demonstrated.


Assuntos
Espécies em Perigo de Extinção , Falconiformes , Genoma , Polimorfismo de Nucleotídeo Único , Animais , Falconiformes/genética , Feminino , Variação Genética , Genômica/métodos , Masculino , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA