Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298871

RESUMO

The white mulberry (Morus alba L.) is widely used as a medicinal plant in Asia. In this study, the bioactive compounds of ethanolic extracts of white mulberry leaves from the Sakon Nakhon and Buriram cultivars were evaluated. The ethanolic extracts of mulberry leaves from the Sakon Nakhon cultivar showed the highest total phenolic content of 49.68 mg GAE/g extract and antioxidant activities of 4.38 mg GAE/g extract, 4.53 mg TEAC/g extract, and 92.78 mg FeSO4/g extract using 2,2 diphenyl-1-picrylhydrazyl (DPPH), 2,20-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays, respectively. The resveratrol and oxyresveratrol compounds in mulberry leaves were also investigated by high-performance liquid chromatography (HPLC). The mulberry leaf extracts from the Sakon Nakhon and Buriram cultivars showed oxyresveratrol contents of 1.20 ± 0.04 mg/g extract and 0.39 ± 0.02 mg/g extract, respectively, whereas resveratrol was not detected. It was also found that the potent anti-inflammatory properties of mulberry leaf extracts and its compounds, resveratrol and oxyresveratrol, suppressed the LPS-stimulated inflammatory responses in RAW 264.7 macrophage cells by significantly reducing nitric oxide production in a concentration-dependent manner. These compounds further inhibited interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) production and suppressed the mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 macrophage cells. Therefore, it is established that mulberry leaf extract and its bioactive compounds contribute to its anti-inflammatory activity.


Assuntos
Antioxidantes , Morus , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Lipopolissacarídeos , Tailândia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células RAW 264.7 , Macrófagos , Resveratrol , Morus/química , Folhas de Planta
2.
Sci Rep ; 14(1): 11914, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789457

RESUMO

Herpes simplex virus (HSV) is a causative agent of fever blister, genital herpes, and neonatal herpes. Nowadays, edible algae are recognized as health food due to high nutrition content and their many active compounds that are beneficial to health. The purpose of this study is to investigate the inhibitory effects of algal polysaccharide extract from Cladophora spp. against herpes simplex virus type 1 and type 2 on Vero cells. In this study, the structure of polysaccharide extract is presented as S=O and C-O-S of the sulfate group, as identified by the FT-IR technique. The toxicity of algal polysaccharide extract on Vero cells was determined by MTT assay. The algal extract showed low toxicity on the cells, with 50% cytotoxic concentration (CC50) value greater than 5000 µg mL-1. The inhibition of HSV infection by the algal extract was then evaluated on Vero cells using plaque reduction assay. The 50% effective concentration (EC50) values of algal extract exhibited antiviral activity against HSV-1 upon treatment before, during, and after viral adsorption with and without removal of the extract were 70.31, 15.17, > 5000 and 9.78 µg mL-1, respectively. Additionally, the EC50 values of algal extract against HSV-2 upon treatment before, during and after viral adsorption with, and without removal of the extract were 5.85, 2.57, > 5000 and 26.96 µg mL-1, respectively. Moreover, the algal extract demonstrated direct inactivation of HSV-1 and HSV-2 virions as well as inhibitory effect against HSV replication. Accordingly, algal polysaccharide extract containing sulfated polysaccharides showed strong activity against HSV. Therefore, it is proved to be useful to apply Cladophora spp. polysaccharide extract as an anti-HSV agent.


Assuntos
Antivirais , Clorófitas , Herpesvirus Humano 1 , Polissacarídeos , Animais , Chlorocebus aethiops , Células Vero , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Antivirais/farmacologia , Antivirais/química , Clorófitas/química , Herpesvirus Humano 1/efeitos dos fármacos , Herpes Simples/tratamento farmacológico , Herpes Simples/virologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Herpesvirus Humano 2/efeitos dos fármacos
3.
PeerJ ; 12: e17490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903886

RESUMO

Background: Pathogenic bacteria are the cause of most skin diseases, but issues such as resistance and environmental degradation drive the need to research alternative treatments. It is reported that silk cocoon extract possesses antioxidant properties. During silk processing, the degumming of silk cocoons creates a byproduct that contains natural active substances. These substances were found to have inhibitory effects on bacterial growth, DNA synthesis, the pathogenesis of hemolysis, and biofilm formation. Thus, silk cocoon extracts can be used in therapeutic applications for the prevention and treatment of skin pathogenic bacterial infections. Methods: The extract of silk cocoons with pupae (SCP) and silk cocoons without pupae (SCWP) were obtained by boiling with distilled water for 9 h and 12 h, and were compared to silkworm pupae (SP) extract that was boiled for 1 h. The active compounds in the extracts, including gallic acid and quercetin, were determined using high-performance liquid chromatography (HPLC). Furthermore, the total phenolic and flavonoid content in the extracts were investigated using the Folin-Ciocalteu method and the aluminum chloride colorimetric method, respectively. To assess antioxidant activity, the extracts were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Additionally, the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of silk extracts and phytochemical compounds were determined against skin pathogenic bacteria. This study assessed the effects of the extracts and phytochemical compounds on growth inhibition, biofilm formation, hemolysis protection, and DNA synthesis of bacteria. Results: The HPLC characterization of the silk extracts showed gallic acid levels to be the highest, especially in SCP (8.638-31.605 mg/g extract) and SP (64.530 mg/g extract); whereas quercetin compound was only detected in SCWP (0.021-0.031 mg/g extract). The total phenolics and flavonoids in silk extracts exhibited antioxidant and antimicrobial activity. Additionally, SCP at 9 h and 12 h revealed the highest anti-bacterial activity, with the lowest MIC and MBC of 50-100 mg/mL against skin pathogenic bacteria including Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Cutibacterium acnes and Pseudomonas aeruginosa. Hence, SCP extract and non-sericin compounds containing gallic acid and quercetin exhibited the strongest inhibition of both growth and DNA synthesis on skin pathogenic bacteria. The suppression of bacterial pathogenesis, including preformed and matured biofilms, and hemolysis activity, were also revealed in SCP extract and non-sericin compounds. The results show that the byproduct of silk processing can serve as an alternative source of natural phenolic and flavonoid antioxidants that can be used in therapeutic applications for the prevention and treatment of pathogenic bacterial skin infections.


Assuntos
Antibacterianos , Antioxidantes , Bombyx , Seda , Animais , Bombyx/química , Antioxidantes/farmacologia , Antioxidantes/química , Seda/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Biofilmes/efeitos dos fármacos , Pupa/efeitos dos fármacos , Radicais Livres/metabolismo , Testes de Sensibilidade Microbiana , Hemólise/efeitos dos fármacos
4.
Insects ; 15(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38392528

RESUMO

Herpes simplex virus (HSV) is known to cause cold sores and various diseases in humans. Importantly, HSV infection can develop latent and recurrent infections, and it is also known to cause inflammation. These infections are difficult to control, and effective treatment of the disease remains a challenge. Thus, the search for new antiviral and anti-inflammatory agents is a necessity. Melittin is a major peptide that is present in the venom of the honeybee. It possesses a number of pharmacological properties. In this study, the effects of the melittin peptides from A. mellifera (MEL-AM) and A. florea (MEL-AF) against HSV-1 and HSV-2 were evaluated at different stages during the viral multiplication cycle in an attempt to define the mode of antiviral action using plaque reduction and virucidal assays. The results revealed a new finding that melittin at 5 µg/mL demonstrated the highest inhibitory effect on HSV through the direct inactivation of viral particles, and MEL-AF displayed a greater virucidal activity. Moreover, melittin was also observed to interfere with the process of HSV attachment to the host cells. MEL-AM exhibited anti-HSV-1 and anti-HSV-2 effects with EC50 values of 4.90 ± 0.15 and 4.39 ± 0.20 µg/mL, while MEL-AF demonstrated EC50 values of 4.47 ± 0.21 and 3.95 ± 0.61 µg/mL against HSV-1 and HSV-2, respectively. However, non-cytotoxic concentrations of both types of melittin produced only slight degrees of HSV-1 and HSV-2 inhibition after viral attachment, but melittin at 5 µg/mL was able to reduce the plaque size of HSV-2 when compared to the untreated group. In addition, MEL-AM and MEL-AF also exhibited anti-inflammatory activity via the inhibition of nitric oxide production in LPS-stimulated RAW 264.7 macrophage cells, and they were also found to down-regulate the expressions of the iNOS, COX-2 and IL-6 genes. The highest inhibition of IL-6 mRNA expression was found after treatment with 10 µg/mL of MEL-AM and MEL-AF. Therefore, melittin peptides have displayed strong potential to be used as an alternative treatment for HSV infection and inflammatory diseases in the future.

5.
Nanomaterials (Basel) ; 13(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36678022

RESUMO

Tuberculosis (TB) therapy requires long-course multidrug regimens leading to the emergence of drug-resistant TB and increased public health burden worldwide. As the treatment strategy is more challenging, seeking a potent non-antibiotic agent has been raised. Propolis serve as a natural source of bioactive molecules. It has been evidenced to eliminate various microbial pathogens including Mycobacterium tuberculosis (Mtb). In this study, we fabricated the niosome-based drug delivery platform for ethanolic extract of propolis (EEP) using thin film hydration method with Ag85A aptamer surface modification (Apt-PEGNio/EEP) to target Mtb. Physicochemical characterization of PEGNio/EEP indicated approximately -20 mV of zeta potential, 180 nm of spherical nanoparticles, 80% of entrapment efficiency, and the sustained release profile. The Apt-PEGNio/EEP and PEGNio/EEP showed no difference in these characteristics. The chemical composition in the nanostructure was confirmed by Fourier transform infrared spectrometry. Apt-PEGNio/EEP showed specific binding to Mycobacterium expressing Ag85 membrane-bound protein by confocal laser scanning microscope. It strongly inhibited Mtb in vitro and exhibited non-toxicity on alveolar macrophages. These findings indicate that the Apt-PEGNio/EEP acts as an antimycobacterial nanoparticle and might be a promising innovative targeted treatment. Further application of this smart nano-delivery system will lead to effective TB management.

6.
Antioxidants (Basel) ; 11(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35326252

RESUMO

Fruit is an essential part of the human diet and is of great interest because of its richness in phytochemicals. Various fruit extracts from citrus, berries and pomegranates have been shown to possess a broad spectrum of medicinal properties. Fruit phytochemicals are of considerable interest because of their antioxidant properties involving different mechanisms of action, which can act against different pathogenic bacteria. The antioxidant capacity of fruit phytochemicals involves different kinds of reactions, such as radical scavenging and chelation or complexation of metal ions. The interaction between fruit phytochemicals and bacteria has different repercussions: it disrupts the cell envelope, disturbs cell-cell communication and gene regulation, and suppresses metabolic and enzymatic activities. Consequently, fruit phytochemicals can directly inhibit bacterial growth or act indirectly by modulating the expression of virulence factors, both of which reduce microbial pathogenicity. The aim of this review was to report our current knowledge on various fruit extracts and their major bioactive compounds, and determine the effectiveness of organic acids, terpenes, polyphenols, and other types of phenolic compounds with antioxidant properties as a source of antimicrobial agents.

7.
Plants (Basel) ; 10(12)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34961207

RESUMO

The fruit of mulberry trees (Morus sp.), mulberries, are traditionally utilised as a nutritional food and provide health benefits as well as skin nourishment in Thailand. White mulberries (Morus alba L.) from Chiang Mai and Mae Hong Son provinces were evaluated for their antioxidant and antibacterial activities. The antioxidant activities as well as the total phenolic, flavonoid and anthocyanin content of the aqueous and ethanolic extracts were determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) (ABTS) and ferric reducing antioxidant power (FRAP) assays. The aqueous extracts of mulberries exhibited the highest antioxidant activity, which was associated with a higher phenolic and anthocyanin content. In testing the potent antibacterial activity against Escherichia coli, Salmonella Typhi, Shigella dysenteriae, Staphylococcus aureus and Vibrio cholerae, the mulberry extracts proved to be quite efficient, especially following water extraction. Time-kill and antibacterial adhesion assays further indicated that aqueous mulberry extracts could inhibit bacterial growth and prevent adhesions of pathogenic enteric bacteria on intestinal epithelial cells. It thus appears that mulberries can potentially be consumed as a good source of antioxidants, containing antimicrobial properties against some pathogenic bacteria which cause gastrointestinal tract infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA