Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 61(36): 14344-14351, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36027580

RESUMO

We prepared two new superhydrophobic functionalized coordination polymers (SFCPs) [Zn4(OH)2(BTMB)2(4,4'-Bipy)2]∞ ⊃ solvent, 1, and [Cd4(OH)2(BTMB)2(4,4'-Bipy)3]∞ ⊃ solvent, 2, by solvothermal methods. For 1, the single-crystal XRD structure revealed that it contains two crystallographically distinct Zn2+ ions with two different types of coordination geometries of 4 and 6, exhibiting a unique superhydrophobic behavior with microporosity. Compound 1 exhibits superhydrophobicity with a contact angle of 155.5° (at 30 °C), which is stable even at high temperatures, whereas for the SFCP 2, all of the Cd2+ ions have only 6-coordination and exhibit a superhydrophobic character at room temperature with a contact angle of 156.7°(at 30 °C). However, surprisingly, this superhydrophobic character is stable only up to 60 °C, above which it is converted to hydrophilic nature, in contrast to the SFCP 1. Moreover, in this study, we also report a selective gas adsorption study of two C2 gases with similar kinetic diameters (∼3.9 Å) of ethylene over ethane.

2.
J Am Chem Soc ; 140(42): 13786-13792, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30269483

RESUMO

We demonstrate a new de novo synthetic methodology to achieve high-temperature-stable compelled composite superhydrophobic porous coordination polymers (PCPs). These new PCPs were achieved based on coordination capabilities of first-row transition metal ions such as Co2+, Ni2+, and Zn2+. The obtained composite PCPs containing a [Zn2M2O]6+ (M = Co or Ni) bimetallic cluster core with open metal sites (OMSs) exhibited distinct isosteric heats of adsorption and surface areas due to the difference in their open metal Lewis acidic sites of solvent-free state. Additionally, these composite PCPs exhibit remarkable superhydrophobic properties with contact angles of 159.3° and 160.8° respectively for Zn-Co and Zn-Ni analogues. This superhydrophobic surface survives even at high temperature for longer time periods. As projected, these new composite PCPs exhibit better surface area and heats of adsorption compared to the PESD-1 (Zn) analogue due to a larger number of OMSs. Moreover, they display selective adsorption toward aromatic solvents such as benzene and toluene over aliphatic solvents such as cyclohexane due to corrugated and terminated aromatic hydrocarbon moieties toward the interactive surface. They also exhibit oil spill cleanup from the water surface in the powder form as well as pellet form up to 385 wt %. This study certainly offers a roadmap for designing and engineering new composite superhydrophobic porous materials for better water and thermal stability along with OMSs. This type of PCP exhibits a wide range of applications especially in catalysis, separation technology, and securing environmental problems such as oil spill cleanup in seawater.

3.
Inorg Chem ; 56(18): 11184-11189, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28846400

RESUMO

We achieved a dense I1O3 hybrid superhydrophobic porous coordination polymer (PCP), [Pb(H-BTMB)(DMF)] (1), by solvothermal methods. The single-crystal XRD structure of 1 indicated that it has a three-dimensional M-L-M framework with one-dimensional M-O-M connectivity leading to an I1O3 network. The new PCP obtained exhibited open metal sites (OMSs) by losing a coordinated DMF molecule. The degassed phase displayed selective adsorption of CO2 gas over N2, C2H6, and C2H4 gases. Additionally, it has a superhydrophobic surface with a contact angle of 156.4° at room temperature and it is stable even at 90 °C, displaying a contact angle of 135.3°.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA