Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787834

RESUMO

The use of nanoparticles (NPs) has emerged as a potential tool for safe and effective drug delivery. In the present study, we developed small molecule P7C3-based NPs and tested its efficacy and toxicity along with the tissue specific aptamer-modified P7C3 NPs. The P7C3 NPs were prepared using poly (D, L-lactic-co-glycolic acid) carboxylic acid (PLGA-COOH) polymer, were conjugated with skeletal muscle-specific RNA aptamer (A01B P7C3 NPs) and characterized for its cytotoxicity, cellular uptake, and wound healing in vitro. The A01B P7C3 NPs demonstrated an encapsulation efficiency of 30.2 ± 2.6%, with the particle size 255.9 ± 4.3 nm, polydispersity index of 0.335 ± 0.05 and zeta potential of + 10.4 ± 1.8mV. The FTIR spectrum of P7C3 NPs displayed complete encapsulation of the drug in the NPs. The P7C3 NPs and A01B P7C3 NPs displayed sustained drug release in vitro for up to 6 days and qPCR analysis confirmed A01B aptamer binding to P7C3 NPs. The C2C12 cells viability assay displayed no cytotoxic effects of all 3 formulations at 48 and 72 h. In addition, the cellular uptake of A01B P7C3 NPs in C2C12 myoblasts demonstrated higher uptake. In vitro assay mimicking wound healing showed improved wound closure with P7C3 NPs. In addition, P7C3 NPs significantly decreased TNF-α induced NF-κB activity in the C2C12/NF-κB reporter cells after 24-hour treatment. The P7C3 NPs showed 3-4-fold higher efficacy compared to P7C3 solutions in both wound-closure and inflammation assays in C2C12 cells. Furthermore, the P7C3 NPs showed 3-4-fold higher efficacy in reducing the infarct size and protected mouse hearts from ex vivo ischemia-reperfusion injury. Overall, this study demonstrates the safe and effective delivery of P7C3 NPs.

2.
AAPS PharmSciTech ; 21(8): 291, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33085055

RESUMO

Age-related macular degeneration, precisely neovascular form, is the leading cause of vision loss and the key treatment includes intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF) agents. A method to increase local concentration of drug at posterior segment of the eye and to reduce the frequency of intravitreal injections is an unmet need. Resveratrol, a naturally occurring antioxidant and anti-inflammatory polyphenol, was loaded in PLGA polymeric nanoparticles to study their sustained release property and effectiveness in reducing expression of VEGF protein in vitro. Nanoparticles were characterized using FTIR, DSC, size, encapsulation efficiency, TEM, and in vitro drug release studies. Using MTT assay, the cytotoxicity of formulation was evaluated on ARPE-19 cells. The cellular uptake and VEGF expression levels were also evaluated in in vitro settings. The optimized formulation had a particle size of 102.7 nm with - 47.30 mV of zeta potential. Entrapment efficiency was found to be 65.21%. The cell viability results suggested compatibility of developed formulation. Cellular uptake and VEGF expression levels for the formulated nanoparticles specified that the developed formulation showed potential cellular uptake and had displayed anti-angiogenic property by inhibiting VEGF expression in vitro. The results showed successful development of resveratrol-loaded nanoparticles which may be used for neovascular AMD treatment alone or in combination with anti-VEGF agents.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Antioxidantes/administração & dosagem , Nanopartículas , Resveratrol/administração & dosagem , Degeneração Macular Exsudativa/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Injeções Intravítreas , Polímeros/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Acuidade Visual
3.
Can J Physiol Pharmacol ; 97(7): 675-684, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31100204

RESUMO

Glucocorticoids, such as fluticasone propionate (FP), are used for the treatment of inflammation and alleviation of nasal symptoms and allergies, and as an antipruritic. However, both short- and long-term therapeutic use of glucocorticoids can lead to muscle weakness and atrophy. In the present study, we evaluated the feasibility of the nanodelivery of FP with poly(dl-lactide-co-glycolide) (PLGA) and tested in vitro function. FP-loaded PLGA nanoparticles were prepared via nanoprecipitation and morphological characteristics were studied via scanning electron microscopy. FP-loaded nanoparticles demonstrated an encapsulation efficiency of 68.6% ± 0.5% with a drug loading capacity of 4.6% ± 0.04%, were 128.8 ± 0.6 nm in diameter with a polydispersity index of 0.07 ± 0.008, and displayed a zeta potential of -19.4 ± 0.7. A sustained in vitro drug release pattern was observed for up to 7 days. The use of fluticasone nanoparticle decreased lipopolysaccharide (LPS)-induced lactate dehydrogenase release compared with LPS alone in C2C12 treated cells. FP also decreased expression of LPS-induced inflammatory genes in C2C12 treated cells as compared with LPS alone. Taken together, the present study demonstrates in vitro feasibility of PLGA-FP nanoparticle delivery to the skeletal muscle cells, which may be beneficial for treating inflammation.


Assuntos
Portadores de Fármacos/química , Fluticasona/química , Fluticasona/farmacologia , Nanopartículas/química , Animais , Linhagem Celular , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/metabolismo , Camundongos , Tamanho da Partícula
4.
Drug Dev Ind Pharm ; 45(5): 715-723, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30704311

RESUMO

OBJECTIVE: Polymeric nanoparticles (NPs) containing doxorubicin (DOX) were prepared for the inhibition of hypoxia-induced factor 1α (HIF-1α). SIGNIFICANCE: HIF-1α is responsible for the upregulation of several angiogenic factors, including vascular endothelial growth factor (VEGF). DOX inhibits HIF-1α but is highly toxic. By encapsulating DOX in NPs, drug delivery will be sustained and toxicity will be reduced without limiting efficacy. METHODS: DOX NPs were prepared using both polylactic coglycolic acid (PLGA) and chitosan. PLGA NPs were prepared via nanoprecipitation (NPC) and single and double emulsion diffusion (SE; DE). Chitosan NPs were formulated using ionic gelation (IG), and complex coacervation (CC). Size, polydispersity index (PDI), and zeta potential (ZP) were determined via dynamic light scattering (DLS) (n = 3). The encapsulation efficiency (EE), drug loading capacity (DLC) (n = 3) and in vitro drug release profiles (IVR) at 37 °C (n = 4) were analyzed via spectroscopy at 480 nm (λmax). The cytotoxicity of each formulation as well as free DOX solution in ARPE-19 cells was determined via MTT assay after 24 h (n = 3). HIF-1α and VEGF inhibition in ARPE-19 cells were measured via ELISA (n = 3). RESULTS: The results were consistent with the hypothesis; the NP formulations decreased HIF-1α and VEGF-A expression in ARPE-19 cells with reduced cytotoxicity. SE, DE, and CC demonstrated low ZP as well as the most rapid drug release of the tested formulations. FTIR confirmed the presence of DOX on the SE NP surface, indicating instability. CONCLUSIONS: SE, DE, and CC destabilized. NPC was the most efficient formulation for the nanodelivery of DOX for AMD.


Assuntos
Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Degeneração Macular/tratamento farmacológico , Linhagem Celular , Precipitação Química , Doxorrubicina/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Emulsões , Células Epiteliais , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Degeneração Macular/patologia , Nanopartículas/química , Tamanho da Partícula , Polímeros/química , Epitélio Pigmentado da Retina/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
AAPS PharmSciTech ; 20(7): 281, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399890

RESUMO

Anti-vascular endothelial growth factor agents have been widely used to treat several eye diseases including age-related macular degeneration (AMD). An approach to maximize the local concentration of drug at the target site and minimize systemic exposure is to be sought. Sunitinib malate, a multiple receptor tyrosine kinase inhibitor was encapsulated in poly(lactic-co-glycolic acid) nanoparticles to impart sustained release. The residence time in vitreal fluid was further increased by incorporating nanoparticles in thermo-reversible gel. Nanoparticles were characterized using TEM, DSC, FTIR, and in vitro drug release profile. The cytotoxicity of the formulation was assessed on ARPE-19 cells using the MTT assay. The cellular uptake, wound scratch assay, and VEGF expression levels were determined in in vitro settings. The optimized formulation had a particle size of 164.5 nm and zeta potential of - 18.27 mV. The entrapment efficiency of 72.0% ± 3.5% and percent drug loading of 9.1 ± 0.7% were achieved. The viability of ARPE-19 cells was greater than 90% for gel loaded, as such and blank nanoparticles at 10 µM and 20 µM concentration tested, whereas for drug solution viability was found to be 83% and 71% respectively at above concentration. The cell viability results suggest the compatibility of the developed formulation. Evaluation of cellular uptake, wound scratch assay, and VEGF expression levels for the developed formulations indicated that the formulation had higher uptake, superior anti-angiogenic potential, and prolonged inhibition of VEGF activity compared with drug solution. The results showed successful development of sunitinib-loaded nanoparticle-based thermo-reversible gel which may be used for the treatment of neovascular AMD.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Nanopartículas/uso terapêutico , Sunitinibe/uso terapêutico , Degeneração Macular Exsudativa/tratamento farmacológico , Inibidores da Angiogênese/administração & dosagem , Humanos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Sunitinibe/administração & dosagem , Acuidade Visual
7.
Can J Physiol Pharmacol ; 96(7): 681-689, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29756463

RESUMO

Glucocorticoids are utilized for their anti-inflammatory properties in the skeletal muscle and arthritis. However, the major drawback of use of glucocorticoids is that it leads to senescence and toxicity. Therefore, based on the idea that decreasing particle size allows for increased surface area and bioavailability of the drug, in the present study, we hypothesized that nanodelivery of dexamethasone will offer increased efficacy and decreased toxicity. The dexamethasone-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles were prepared using nanoprecipitation method. The morphological characteristics of the nanoparticles were studied under scanning electron microscope. The particle size of nanoparticles was 217.5 ± 19.99 nm with polydispersity index of 0.14 ± 0.07. The nanoparticles encapsulation efficiency was 34.57% ± 1.99% with in vitro drug release profile exhibiting a sustained release pattern over 10 days. We identified improved skeletal muscle myoblast performance with improved closure of the wound along with increased cell viability at 10 nmol/L nano-dexamethasone-PLGA. However, dexamethasone solution (1 µmol/L) was injurious to cells because the migration efficiency was decreased. In addition, the use of dexamethasone nanoparticles decreased lipopolysaccharide-induced lactate dehydrogenase release compared with dexamethasone solution. Taken together, the present study clearly demonstrates that delivery of PLGA-dexamethasone nanoparticles to the skeletal muscle cells is beneficial for treating inflammation and skeletal muscle function.


Assuntos
Composição de Medicamentos/métodos , Glucocorticoides/farmacologia , Miosite/tratamento farmacológico , Nanopartículas/química , Cicatrização/efeitos dos fármacos , Animais , Disponibilidade Biológica , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Liberação Controlada de Fármacos , Glucocorticoides/uso terapêutico , Ácido Láctico/química , Camundongos , Microscopia Eletrônica de Transmissão , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/lesões , Mioblastos/efeitos dos fármacos , Nanopartículas/ultraestrutura , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos
8.
Mar Drugs ; 16(9)2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30200225

RESUMO

An N-methylated analog of a marine bacteria-derived natural proline-rich tetracyclopeptide was synthesized by coupling the deprotected dipeptide fragments Boc-l-prolyl-l-N-methylleucine-OH and l-prolyl-l-N-methylphenylalanine-OMe. A coupling reaction was accomplished utilizing N,N'-Dicyclohexylcarbodidimde (DCC) and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC·HCl) as coupling agents and Triethylamine (TEA) or N-methylmorpholine (NMM) as the base in the presence of the racemization suppressing agent. This was followed by the cyclization of the linear tetrapeptide fragment under alkaline conditions. The structure of the synthesized cyclooligopeptide was confirmed using quantitative elemental analysis, FTIR (Fourier-transform infrared spectroscopy), ¹H NMR (Nuclear magnetic resonance spectroscopy), 13C NMR, and mass spectrometry. From the bioactivity results, it was clear that the newly synthesized proline-rich tetracyclopeptide exhibited better anthelmintic potential against Megascoplex konkanensis, Pontoscotex corethruses, and Eudrilus eugeniae at a concentration of 2 mg/mL as well as improved antifungal activity against pathogenic dermatophytes Trichophyton mentagrophytes and Microsporum audouinii at a concentration of 6 µg/mL, as compared to non-methylated tetracyclopeptide. Moreover, N-methylated tetracyclopeptide displayed significant activity against pathogenic Candida albicans.


Assuntos
Organismos Aquáticos/química , Bactérias/química , Helmintos/efeitos dos fármacos , Peptídeos Cíclicos/síntese química , Animais , Anti-Helmínticos/síntese química , Anti-Helmínticos/farmacologia , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/farmacologia , Arthrodermataceae/efeitos dos fármacos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Ciclização , Dipeptídeos/química , Metilação , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptídeos Cíclicos/farmacologia , Prolina/química , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Molecules ; 23(7)2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30011904

RESUMO

The physicochemical and biological properties of active pharmaceutical ingredients (APIs) are greatly affected by their salt forms. The choice of a particular salt formulation is based on numerous factors such as API chemistry, intended dosage form, pharmacokinetics, and pharmacodynamics. The appropriate salt can improve the overall therapeutic and pharmaceutical effects of an API. However, the incorrect salt form can have the opposite effect, and can be quite detrimental for overall drug development. This review summarizes several criteria for choosing the appropriate salt forms, along with the effects of salt forms on the pharmaceutical properties of APIs. In addition to a comprehensive review of the selection criteria, this review also gives a brief historic perspective of the salt selection processes.


Assuntos
Preparações Farmacêuticas/química , Sais , Animais , Vias de Administração de Medicamentos , Humanos , Sais/química , Sais/farmacocinética , Sais/uso terapêutico
10.
Pharm Dev Technol ; 21(1): 61-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25259682

RESUMO

Age-related macular degeneration (AMD) is one of the leading causes of blindness in the US affecting millions yearly. It is characterized by intraocular neovascularization, inflammation and retinal damage which can be ameliorated through intraocular injections of glucocorticoids. However, the complications that arise from repetitive injections as well as the difficulty posed by targeting the posterior segment of the eye make this interesting territory for the development of novel drug delivery systems (DDS). In the present study, we described the development of a DDS composed of triamcinolone acetonide-encapsulated PEGylated PLGA nanoparticles (NP) incorporated into PLGA-PEG-PLGA thermoreversible gel and its use against VEGF expression characteristic of AMD. We found that the NP with mean size of 208 ± 1.0 nm showed uniform size distribution and exhibited sustained release of the drug. We also demonstrated that the polymer can be injected as a solution and transition to a gel phase based on the biological temperature of the eye. Additionally, the proposed DDS was non-cytotoxic to ARPE-19 cells and significantly reduced VEGF expression by 43.5 ± 3.9% as compared to a 1.53 ± 11.1% reduction with triamcinolone. These results suggest the proposed DDS will contribute to the development of novel therapeutic strategies for AMD.


Assuntos
Degeneração Macular/metabolismo , Nanopartículas/administração & dosagem , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Triancinolona Acetonida/administração & dosagem , Linhagem Celular , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos/métodos , Géis , Humanos , Degeneração Macular/tratamento farmacológico , Nanopartículas/química , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Poliglactina 910/administração & dosagem , Poliglactina 910/química , Temperatura , Triancinolona Acetonida/química , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/biossíntese
11.
J Microencapsul ; 32(2): 193-200, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25535989

RESUMO

Micronisation of simvastatin dissolved in acetone, dimethyl sulfoxide and ethanol with supercritical carbon dioxide as antisolvent was successfully performed using a supercritical antisolvent technique. The effect of a few process parameters such as precipitation temperature, the pressure and solute concentration in the liquid solution has been studied to evaluate their influence on morphology and size of particles. The micronised simvastatin were evaluated for drug content, particle size analysis and in vitro dissolution profiles. Fourier transform infrared spectroscopy, differential scanning calorimetry and PXRD patterns was used to study the possible changes after micronisation of simvastatin. The dissolution rate was increased after micronised compared with pure simvastatin in distilled water, pH 1.2 buffer and pH 7.0 buffer. In vivo performance of the optimised formulation was evaluated in rats using pharmacodynamic marker parameters like serum total cholesterol (CH) and triglycerides (TG) for 21 days. Pharmacodynamic studies of micronised simvastatin revealed improved reduction in CH and TG values as compared with pure simvastatin indicating improved bioavailability. In vivo pharmacokinetics in rats showed an increase in bioavailability of micronised simvastatin (3.14 times) compared with plain simvastatin.


Assuntos
Acetona/química , Dióxido de Carbono/química , Dimetil Sulfóxido/química , Liberação Controlada de Fármacos , Etanol/química , Sinvastatina , Animais , Feminino , Masculino , Ratos , Ratos Wistar , Sinvastatina/química , Sinvastatina/farmacocinética , Sinvastatina/farmacologia
12.
Pharm Dev Technol ; 20(4): 497-506, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24597667

RESUMO

OBJECTIVES: To prepare and characterize in vitro a novel brain-targeted delivery of doxorubicin using glutathione-coated nanoparticles (NPs) for the treatment of brain cancer. METHODS: Doxorubicin-loaded NPs were prepared by the nanoprecipitation method using PLGA-COOH (dl-lactide-co-glycolide). The NPs were coated with a glutathione-PEG conjugate (PEG-GSH) in order to target delivery to the brain. The NPs were characterized via in vitro studies to determine particle size, drug release, cellular uptake, immunofluorescence study, cytotoxic assay, and in vitro blood-brain barrier (BBB) assay. RESULTS: The NPs showed a particle size suitable for BBB permeation (particle size around 200 nm). The in vitro release profile of the NPs exhibited no initial burst release and showed sustained drug release for up to 96 h. The immunofluorescence study showed the glutathione coating does not interfere with the drug release. Furthermore, in vitro BBB Transwell™ study showed significantly higher permeation of the doxorubicin-loaded NPs compared with the free doxorubicin solution through the coculture of rat brain endothelial (RBE4) and C6 astrocytoma cells (p < 0.05). CONCLUSIONS: We conclude that the initial in vitro characterization of the NPs demonstrates potential in delivering doxorubicin to cancer cells with possible future application in targeting brain cancers in vivo.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Barreira Hematoencefálica/metabolismo , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Glutationa/química , Nanopartículas/química , Animais , Antibióticos Antineoplásicos/farmacocinética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/farmacocinética , Portadores de Fármacos/metabolismo , Glutationa/metabolismo , Ácido Láctico/química , Ácido Láctico/metabolismo , Nanopartículas/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Ácido Poliglicólico/química , Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos
13.
Chembiochem ; 15(11): 1591-1598, 2014 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-25045125

RESUMO

Parkinson's disease (PD) is an age-related neurodegenerative disease affecting movement. To date, there are no currently available therapeutic agents which can prevent or slow disease progression. Here, we evaluated an azobenzene derivative, methyl yellow (MY), as a potential drug scaffold for PD; its inhibitory activity toward monoamine oxidase B (MAO-B) as well as drug-like properties were investigated. The inhibitory effect of MY on MAO activity was determined by a MAO enzyme inhibition assay. In addition, the in vitro properties of MY as a drug candidate (e.g., blood-brain barrier (BBB) permeability, serum albumin binding, drug efflux through P-glycoprotein (P-gp), drug metabolism by P450, and mitochondrial toxicity) were examined. In vivo effectiveness of MY was also evaluated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Parkinsonian mouse model. MY selectively inhibited MAO-B in a dose-dependent and reversible manner. MY was BBB-permeable, bound relatively weakly to serum albumin, was an unlikely substrate for both systems of P-gp and P450, and did not cause mitochondrial toxicity. Results from the MPTP Parkinsonian mouse model indicated that, upon treatment with MY, neurotoxicity induced by MPTP was mitigated. Investigations of MY demonstrate its inhibitory activity toward MAO-B, compliant properties for drug consideration, and its neuroprotective capability in the MPTP Parkinsonian mouse model. These data provide insights into potential use, optimization, and new design of azobenzene derivatives for PD treatment.

14.
AAPS PharmSciTech ; 15(6): 1562-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25134466

RESUMO

Gliomas are some of the most aggressive types of cancers but the blood-brain barrier acts as an obstacle to therapeutic intervention in brain-related diseases. The blood-brain barrier blocks the permeation of potentially toxic compounds into neural tissue through the interactions of brain endothelial cells with glial cells (astrocytes and pericytes) which induce the formation of tight junctions in endothelial cells lining the blood capillaries. In the present study, we characterize a glutathione-coated docetaxel-loaded PEG-PLGA nanoparticle, show its in vitro drug release data along with cytotoxicity data in C6 and RG2 cells, and investigate its trans-blood-brain barrier permeation through the establishment of a Transwell cellular co-culture. We show that the docetaxel-loaded nanoparticle's size enables its trans-blood-brain barrier permeation; the nanoparticle exhibits a steady, sustained release of docetaxel; the drug is able to induce cell death in glioma models; and the glutathione-coated nanoparticle is able to permeate through the Transwell in vitro blood-brain barrier model.


Assuntos
Antineoplásicos/metabolismo , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Portadores de Fármacos , Glioma/metabolismo , Glutationa/metabolismo , Nanopartículas , Poliésteres/química , Polietilenoglicóis/química , Taxoides/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias Encefálicas/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Química Farmacêutica , Técnicas de Cocultura , Preparações de Ação Retardada , Docetaxel , Relação Dose-Resposta a Droga , Impedância Elétrica , Glioma/patologia , Glutationa/química , Cinética , Nanomedicina , Permeabilidade , Ratos , Solubilidade , Taxoides/química , Taxoides/farmacologia , Tecnologia Farmacêutica/métodos
15.
Pathol Res Pract ; 260: 155444, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38986361

RESUMO

Lung cancer is still a global health challenge in terms of high incidence, morbidity, and mortality. Recent scientific studies have determined that pyroptosis, a highly inflammatory form of programmed cell death, can be identified as a potential lung cancer therapeutic target. The NLRP3 inflammasome acts as a critical mediator in this process and, upon activation, activates multiprotein complex formation as well as caspase-1 activation. This process, triggered by a release of pro-inflammatory cytokines, results in pyroptotic cell death. Also, the relationship between the NLRP3 inflammasome and lung cancer was justified by its influence on tumour growth or metastasis. The molecular pathways produce progenitive mediators and remake the tissue. Finally, targeting NLRP3 inflammasome for pyroptosis induction and inhibition of its activation appears to be a promising lung cancer treatment approach. This technique makes cancer treatment more promising and personalized. This review explores the role of NLRP3 inflammasome activation and its possibilities in lung cancer treatment.


Assuntos
Inflamassomos , Neoplasias Pulmonares , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Inflamassomos/metabolismo , Animais
16.
Pharm Dev Technol ; 18(4): 957-62, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22206499

RESUMO

The purpose of this study is to investigate a thermoreversible gel using Pluronic F-127 to deliver an activin receptor-like kinase 5 (ALK-5) inhibitor SB-505124 in glaucoma filtration surgery (GFS). The gel was characterized for in vitro drug release and viscosity studies. Cytotoxicity of Pluronic F-127 was examined by MTT assay using cultured rabbit subconjunctival fibroblasts. In addition, Pluronic F-127 gel (18% w/v) containing 5 mg of SB-505124 was applied at the surgical site in an in vivo rabbit GFS model. In the in vitro viscosity study, the gel showed a change in viscosity (from 1000 cps to 45,000 cps) from low temperature (10°C) to body temperature (37°C). The in vitro drug release study demonstrated 100% drug release within 12 h. The gel did not show cytotoxicity to the cultured rabbit subconjunctival cells by MTT assay. In the in vivo rabbit GFS model, the drug was successfully delivered by injection and no severe post-surgical complications were observed. A thermoreversible gel system with SB-505124 was successfully prepared and delivered for the rabbit GFS model, and it may provide a novel delivery system in GFS.


Assuntos
Benzodioxóis/administração & dosagem , Sistemas de Liberação de Medicamentos , Cirurgia Filtrante/métodos , Glaucoma/cirurgia , Imidazóis/administração & dosagem , Piridinas/administração & dosagem , Animais , Benzodioxóis/farmacocinética , Benzodioxóis/toxicidade , Temperatura Corporal , Preparações de Ação Retardada , Modelos Animais de Doenças , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Géis , Imidazóis/farmacocinética , Imidazóis/toxicidade , Poloxâmero/química , Poloxâmero/toxicidade , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridinas/farmacocinética , Piridinas/toxicidade , Coelhos , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Temperatura , Fatores de Tempo , Viscosidade
17.
Assay Drug Dev Technol ; 20(4): 164-174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617693

RESUMO

Raloxifene (RLX), a biopharmaceutical classification system (BCS) class II drug, is a selective estrogen receptor modulator (SERM) having an estrogenic effect on the bone and an antiestrogenic effect on the endometrium and breast. Low solubility, high permeability, high metabolism, and low bioavailability are the characteristics of raloxifene. Although 60% is absorbed orally, raloxifene shows extremely poor bioavailability (2%) owing to its low solubility and extensive (>90%) intestinal/hepatic first-pass metabolism. Hence, it becomes important to increase the solubility of raloxifene to enhance its bioavailability. In this study, raloxifene nanostructured lipid carriers (RNLCs) were prepared using the melt dispersion ultrasonication method. The prepared RNLCs were characterized, and the in vitro studies were carried out in the human epithelial breast cancer cell line (MCF-7). The RNLCs had a size of 114.8 ± 0.98 nm and a zeta potential of +9.21 ± 0.58 mV. Transmission electron microscopy (TEM) images showed particle size ranging from 65 to 120 nm. With an entrapment efficiency of 75.04% ± 2.75%, the RNLCs showed sustained release over 7 days compared with the raloxifene drug solution. The prepared RNLCs were successfully taken up by the MCF-7 cells in a time-dependent manner, and the RNLCs showed increased cell cytotoxicity compared with the raloxifene drug. Using the parallel artificial membrane permeability assay (PAMPA), the permeability rate for raloxifene solution was calculated to be 8 × 10-6 cm/s, and for the RNLCs, it was calculated to be 17.8 × 10-6 cm/s. Hence, from the permeability rate calculated, we could conclude that raloxifene, when formulated as nanostructured lipid carriers, showed increased permeability. Overall, the prepared RNLCs were found to be superior to the raloxifene drug as such.


Assuntos
Lipídeos , Cloridrato de Raloxifeno , Animais , Feminino , Humanos , Permeabilidade , Cloridrato de Raloxifeno/farmacologia , Ratos , Ratos Wistar , Solubilidade
18.
Assay Drug Dev Technol ; 19(6): 350-360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34227879

RESUMO

Age-related macular degeneration (AMD), a multifactorial age-related retinal hypoxic disorder resulting in irreversible loss of vision, is the foremost cause of blindness in the United States. Current treatment strategies involve multiple intraocular injections of antivascular endothelial growth factor (VEGF) agents into the vitreous of eye. In addition to the challenges of drug localization and targeted delivery, the need of frequent injections into the eye raises patient compliance issues, and thus call for development of sustained drug delivery systems. In this study, a sustained drug delivery system was prepared by loading an antihypoxia-induced factor (HIF) agent, honokiol (HON), into methoxy poly (ethylene glycol) polycaprolactone (MPEG-PCL) polymer. These HON-MPEG-PCL micelles were characterized by evaluating size, ζ potential, in vitro drug release profile, and morphology by transmission electron microscopy. The cytotoxic nature of developed micelles was assessed on human retinal pigment epithelial cell line (ARPE-19) cells by cytotoxicity assay. The cellular uptake and HIF and VEGF expression levels were determined in in vitro settings. Micelles formed had a particle size of 30.8 ± 0.8 nm with the poly dispersity index of 0.19 ± 0.0004 and ζ potential was found to be -5.46 ± 0.49 mv. Entrapment efficiency was calculated to be 64 ± 0.135%. In vitro drug release showed sustained release of drug from the formulation. Result from in vitro cytotoxicity study confirmed noncytotoxic nature of HON-MPEG-PCL micelles compared to HON drug solution. Furthermore, enzyme-linked immunosorbent assay studies performed showed the periodic downregulation of HIF and VEGF, which are major growth factors involved in underlying mechanism of AMD. The results showed successful development of HON-MPEG-PCL micelles, which may be useful for the effective treatment of AMD.


Assuntos
Degeneração Macular , Micelas , Compostos de Bifenilo , Humanos , Lignanas , Degeneração Macular/tratamento farmacológico , Poliésteres
19.
Ther Deliv ; 10(11): 737-747, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31718481

RESUMO

Pathologic posterior neovascularization of eye is a major cause of irreversible vision loss and limitations of therapeutics to be successfully delivered to back of the eye has been a main obstacle for its effective treatment. Current pharmacological treatment using anti-VEGF agents being delivered intravitreally are effective but complicated due to anatomical and physiological barriers, as well as administration of high and frequent doses. With expanding horizons of nanotechnology, it can be possible to formulate promising nanoscale delivery system to improve penetration and sustained the release of therapeutic in posterior segment of the eye. Taking into consideration advances in the field of nanoscale delivery systems, this special report focuses on emerging strategies and their applications for treatment of posterior ocular neovascularization.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Portadores de Fármacos/química , Nanopartículas/química , Neovascularização Retiniana/terapia , Adenoviridae/genética , Administração Oftálmica , Inibidores da Angiogênese/farmacocinética , Animais , Cegueira/etiologia , Cegueira/prevenção & controle , Barreira Hematoaquosa/metabolismo , Barreira Hematorretiniana/metabolismo , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Terapia a Laser/métodos , Absorção Ocular , Permeabilidade , Fotoquimioterapia , Retina/metabolismo , Neovascularização Retiniana/complicações , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Baixa Visão/etiologia , Baixa Visão/prevenção & controle , Vitrectomia
20.
Onco Targets Ther ; 12: 3161-3170, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114253

RESUMO

Background: GADD45α is a tumor suppressor protein often upregulated by environmental stresses and DNA-damage agents to cause growth arrest, apoptosis, tumor growth inhibition, and anti-angiogenesis. A novel suicide gene therapy vector pE9NS.G45α was engineered by cloning GADD45α opening reading frame downstream to the synthetic CArG promoter E9NS, which contains nine repeats of CArG element with modified core A/T sequence and functions as a molecular switch to drive the expression of GADD45α. The current study aims to determine the efficacy of this suicide gene therapy vector in combination with cisplatin, resveratrol, and radiation in NSCLC cell lines with various p53 statuses. Methods: Three NSCLC cell lines, H1299 (deleted p53), A549 (wild-type p53), and H23 (mutated p53), were examined in the present investigation to represent NSCLC with different p53 functions. MTT assay was conducted to select suitable doses of cisplatin, resveratrol, and radiation for gene therapy, and dual luciferase assay was performed to validate the activation of promoter E9NS. The efficacy of gene therapy combinations was evaluated by the amount of GADD45α expression, cell survival, and apoptosis. Results: All the combinations successfully activated promoter E9NS to elevate intracellular GADD45α protein levels and subsequently enhanced cell viability reduction and apoptosis induction regardless of p53 status. Conclusion: Our study demonstrates that GADD45α-targeted suicide gene therapy controlled by synthetic promoter E9NS sensitizes NSCLC cells to cisplatin, resveratrol, and radiation and is effective against NSCLC at least in vitro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA