Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proteins ; 85(1): 54-64, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27761949

RESUMO

To adopt a particular fold, a protein requires several interactions between its amino acid residues. The energetic contribution of these residue-residue interactions can be approximated by extracting statistical potentials from known high resolution structures. Several methods based on statistical potentials extracted from unrelated proteins are found to make a better prediction of probability of point mutations. We postulate that the statistical potentials extracted from known structures of similar folds with varying sequence identity can be a powerful tool to examine probability of point mutation. By keeping this in mind, we have derived pairwise residue and atomic contact energy potentials for the different functional families that adopt the (α/ß)8 TIM-Barrel fold. We carried out computational point mutations at various conserved residue positions in yeast Triose phosphate isomerase enzyme for which experimental results are already reported. We have also performed molecular dynamics simulations on a subset of point mutants to make a comparative study. The difference in pairwise residue and atomic contact energy of wildtype and various point mutations reveals probability of mutations at a particular position. Interestingly, we found that our computational prediction agrees with the experimental studies of Silverman et al. (Proc Natl Acad Sci 2001;98:3092-3097) and perform better prediction than iMutant and Cologne University Protein Stability Analysis Tool. The present work thus suggests deriving pairwise contact energy potentials and molecular dynamics simulations of functionally important folds could help us to predict probability of point mutations which may ultimately reduce the time and cost of mutation experiments. Proteins 2016; 85:54-64. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Fúngicas/química , Modelos Estatísticos , Simulação de Dinâmica Molecular , Mutação Puntual , Triose-Fosfato Isomerase/química , Sequência de Aminoácidos , Proteínas Fúngicas/genética , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Termodinâmica , Triose-Fosfato Isomerase/genética
2.
Nat Prod Bioprospect ; 5(6): 293-306, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26667936

RESUMO

Ayurveda is a renowned traditional medicine practiced in India from ancient times and Clitoria ternatea is one such prospective medicinal herb incorporated as an essential constituent in a brain tonic called as medhya rasayan for treating neurological disorders. This work emphasises the significance of the plant as a brain drug there by upholding Indian medicine. The phytochemicals from the root extract were extricated using gas chromatography-mass spectrometry assay and molecular docking against the protein Monoamine oxidase was performed with four potential compounds along with four reference compounds of the plant. This persuades the prospect of C. ternatea as a remedy for neurodegenerative diseases and depression. The in silico assay enumerates that a major compound (Z)-9,17-octadecadienal obtained from the chromatogram with a elevated retention time of 32.99 furnished a minimum binding affinity energy value of -6.5 kcal/mol against monoamine oxidase (MAO-A). The interactions with the amino acid residues ALA 68, TYR 60 and TYR 69 were analogous to the reference compound kaempferol-3-monoglucoside with a least score of -13.90/-12.95 kcal/mol against the isoforms (MAO) A and B. This study fortifies the phytocompounds of C. ternatea as MAO-inhibitors and to acquire a pharmaceutical approach in rejuvenating Ayurvedic medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA