RESUMO
The spectrin superfamily of proteins plays key roles in assembling the actin cytoskeleton in various cell types, crosslinks actin filaments, and acts as scaffolds for the assembly of large protein complexes involved in structural integrity and mechanosensation, as well as cell signaling. α-actinins in particular are the major actin crosslinkers in muscle Z-disks, focal adhesions, and actin stress fibers. We report a complete high-resolution structure of the 200 kDa α-actinin-2 dimer from striated muscle and explore its functional implications on the biochemical and cellular level. The structure provides insight into the phosphoinositide-based mechanism controlling its interaction with sarcomeric proteins such as titin, lays a foundation for studying the impact of pathogenic mutations at molecular resolution, and is likely to be broadly relevant for the regulation of spectrin-like proteins.
Assuntos
Actinina/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Músculo Esquelético/química , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Difração de Raios XRESUMO
CRISPR defence systems such as the well-known DNA-targeting Cas9 and the RNA-targeting type III systems are widespread in prokaryotes1,2. The latter orchestrates a complex antiviral response that is initiated through the synthesis of cyclic oligoadenylates after recognition of foreign RNA3-5. Among the large set of proteins that are linked to type III systems and predicted to bind cyclic oligoadenylates6,7, a CRISPR-associated Lon protease (CalpL) stood out to us. CalpL contains a sensor domain of the SAVED family7 fused to a Lon protease effector domain. However, the mode of action of this effector is unknown. Here we report the structure and function of CalpL and show that this soluble protein forms a stable tripartite complex with two other proteins, CalpT and CalpS, that are encoded on the same operon. After activation by cyclic tetra-adenylate (cA4), CalpL oligomerizes and specifically cleaves the MazF homologue CalpT, which releases the extracytoplasmic function σ factor CalpS from the complex. Our data provide a direct connection between CRISPR-based detection of foreign nucleic acids and transcriptional regulation. Furthermore, the presence of a SAVED domain that binds cyclic tetra-adenylate in a CRISPR effector reveals a link to the cyclic-oligonucleotide-based antiphage signalling system.
Assuntos
Bactérias , Bacteriófagos , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Nucleotídeos Cíclicos , Protease La , Bactérias/enzimologia , Bactérias/imunologia , Bactérias/metabolismo , Bactérias/virologia , Bacteriófagos/imunologia , Bacteriófagos/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , AMP Cíclico/análogos & derivados , AMP Cíclico/química , Ativação Enzimática , Regulação Bacteriana da Expressão Gênica , Nucleotídeos Cíclicos/imunologia , Nucleotídeos Cíclicos/metabolismo , Óperon , Protease La/química , Protease La/metabolismo , RNA Viral , Fator sigma , Transcrição GênicaRESUMO
Of the eight distinct polyubiquitin (polyUb) linkages that can be assembled, the roles of K48-linked polyUb (K48-polyUb) are the most established, with K48-polyUb modified proteins being targeted for degradation. MINDY1 and MINDY2 are members of the MINDY family of deubiquitinases (DUBs) that have exquisite specificity for cleaving K48-polyUb, yet we have a poor understanding of their catalytic mechanism. Here, we analyze the crystal structures of MINDY1 and MINDY2 alone and in complex with monoUb, di-, and penta-K48-polyUb, identifying 5 distinct Ub binding sites in the catalytic domain that explain how these DUBs sense both Ub chain length and linkage type to cleave K48-polyUb chains. The activity of MINDY1/2 is inhibited by the Cys-loop, and we find that substrate interaction relieves autoinhibition to activate these DUBs. We also find that MINDY1/2 use a non-canonical catalytic triad composed of Cys-His-Thr. Our findings highlight multiple layers of regulation modulating DUB activity in MINDY1 and MINDY2.
Assuntos
Enzimas Desubiquitinantes/metabolismo , Poliubiquitina/metabolismo , Ubiquitina Tiolesterase/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia , Enzimas Desubiquitinantes/genética , Ativação Enzimática , Humanos , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Espalhamento a Baixo Ângulo , Relação Estrutura-Atividade , Ubiquitina Tiolesterase/genética , UbiquitinaçãoRESUMO
Toxin-antitoxin (TA) systems regulate fundamental cellular processes in bacteria and represent potential therapeutic targets. We report a new RES-Xre TA system in multiple human pathogens, including Mycobacterium tuberculosis. The toxin, MbcT, is bactericidal unless neutralized by its antitoxin MbcA. To investigate the mechanism, we solved the 1.8 Å-resolution crystal structure of the MbcTA complex. We found that MbcT resembles secreted NAD+-dependent bacterial exotoxins, such as diphtheria toxin. Indeed, MbcT catalyzes NAD+ degradation in vitro and in vivo. Unexpectedly, the reaction is stimulated by inorganic phosphate, and our data reveal that MbcT is a NAD+ phosphorylase. In the absence of MbcA, MbcT triggers rapid M. tuberculosis cell death, which reduces mycobacterial survival in macrophages and prolongs the survival of infected mice. Our study expands the molecular activities employed by bacterial TA modules and uncovers a new class of enzymes that could be exploited to treat tuberculosis and other infectious diseases.
Assuntos
Antitoxinas/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/enzimologia , Fosforilases/metabolismo , Sistemas Toxina-Antitoxina , Tuberculose/microbiologia , Animais , Antibióticos Antituberculose/farmacologia , Antitoxinas/química , Antitoxinas/genética , Carga Bacteriana , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Células Cultivadas , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , Humanos , Cinética , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Viabilidade Microbiana , Modelos Moleculares , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/patogenicidade , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , NAD/metabolismo , Fosforilases/química , Fosforilases/genética , Conformação Proteica , Sistemas Toxina-Antitoxina/genética , Tuberculose/tratamento farmacológicoRESUMO
Human nineteen complex (NTC) acts as a multimeric E3 ubiquitin ligase in DNA repair and splicing. The transfer of ubiquitin is mediated by Prp19-a homotetrameric component of NTC whose elongated coiled coils serve as an assembly axis for two other proteins called SPF27 and CDC5L. We find that Prp19 is inactive on its own and have elucidated the structural basis of its autoinhibition by crystallography and mutational analysis. Formation of the NTC core by stepwise assembly of SPF27, CDC5L, and PLRG1 onto the Prp19 tetramer enables ubiquitin ligation. Protein-protein crosslinking of NTC, functional assays in vitro, and assessment of its role in DNA damage response provide mechanistic insight into the organization of the NTC core and the communication between PLRG1 and Prp19 that enables E3 activity. This reveals a unique mode of regulation for a complex E3 ligase and advances understanding of its dynamics in various cellular pathways.
Assuntos
Enzimas Reparadoras do DNA/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Processamento de RNA/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Cristalização , Dano ao DNA , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Mutação , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformação Proteica , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína de Replicação A/metabolismo , Células Sf9 , Spodoptera , Relação Estrutura-Atividade , Ubiquitinação , Repetições WD40RESUMO
Short-range interactions and long-range contacts drive the 3D folding of structured proteins. The proteins' structure has a direct impact on their biological function. However, nearly 40% of the eukaryotes proteome is composed of intrinsically disordered proteins (IDPs) and protein regions that fluctuate between ensembles of numerous conformations. Therefore, to understand their biological function, it is critical to depict how the structural ensemble statistics correlate to the IDPs' amino acid sequence. Here, using small-angle X-ray scattering and time-resolved Förster resonance energy transfer (trFRET), we study the intramolecular structural heterogeneity of the neurofilament low intrinsically disordered tail domain (NFLt). Using theoretical results of polymer physics, we find that the Flory scaling exponent of NFLt subsegments correlates linearly with their net charge, ranging from statistics of ideal to self-avoiding chains. Surprisingly, measuring the same segments in the context of the whole NFLt protein, we find that regardless of the peptide sequence, the segments' structural statistics are more expanded than when measured independently. Our findings show that while polymer physics can, to some level, relate the IDP's sequence to its ensemble conformations, long-range contacts between distant amino acids play a crucial role in determining intramolecular structures. This emphasizes the necessity of advanced polymer theories to fully describe IDPs ensembles with the hope that it will allow us to model their biological function.
Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , Sequência de Aminoácidos , Eucariotos/metabolismo , PolímerosRESUMO
Across different kingdoms of life, ATP citrate lyase (ACLY, also known as ACL) catalyses the ATP-dependent and coenzyme A (CoA)-dependent conversion of citrate, a metabolic product of the Krebs cycle, to oxaloacetate and the high-energy biosynthetic precursor acetyl-CoA1. The latter fuels pivotal biochemical reactions such as the synthesis of fatty acids, cholesterol and acetylcholine2, and the acetylation of histones and proteins3,4. In autotrophic prokaryotes, ACLY is a hallmark enzyme of the reverse Krebs cycle (also known as the reductive tricarboxylic acid cycle), which fixates two molecules of carbon dioxide in acetyl-CoA5,6. In humans, ACLY links carbohydrate and lipid metabolism and is strongly expressed in liver and adipose tissue1 and in cholinergic neurons2,7. The structural basis of the function of ACLY remains unknown. Here we report high-resolution crystal structures of bacterial, archaeal and human ACLY, and use distinct substrate-bound states to link the conformational plasticity of ACLY to its multistep catalytic itinerary. Such detailed insights will provide the framework for targeting human ACLY in cancer8-11 and hyperlipidaemia12,13. Our structural studies also unmask a fundamental evolutionary relationship that links citrate synthase, the first enzyme of the oxidative Krebs cycle, to an ancestral tetrameric citryl-CoA lyase module that operates in the reverse Krebs cycle. This molecular transition marked a key step in the evolution of metabolism on Earth.
Assuntos
ATP Citrato (pro-S)-Liase/química , ATP Citrato (pro-S)-Liase/metabolismo , Ciclo do Ácido Cítrico , Evolução Molecular , ATP Citrato (pro-S)-Liase/genética , Biocatálise , Chlorobium/enzimologia , Chlorobium/genética , Cristalografia por Raios X , Humanos , Methanosarcinales/enzimologia , Methanosarcinales/genética , Modelos MolecularesRESUMO
Type IIB receptor protein tyrosine phosphatases are cell surface transmembrane proteins that engage in cell adhesion via their extracellular domains (ECDs) and cell signaling via their cytoplasmic phosphatase domains. The ECDs of type IIB receptor protein tyrosine phosphatases form stable, homophilic, and trans interactions between adjacent cell membranes. Previous work has demonstrated how one family member, PTPRM, forms head-to-tail homodimers. However, as the interface was composed of residues conserved across the family, the determinants of homophilic specificity remain unknown. Here, we have solved the X-ray crystal structure of the membrane-distal N-terminal domains of PTPRK that form a head-to-tail dimer consistent with intermembrane adhesion. Comparison with the PTPRM structure demonstrates interdomain conformational differences that may define homophilic specificity. Using small-angle X-ray scattering, we determined the solution structures of the full-length ECDs of PTPRM and PTPRK, identifying that both are rigid extended molecules that differ in their overall long-range conformation. Furthermore, we identified one residue, W351, within the interaction interface that differs between PTPRM and PTPRK and showed that mutation to glycine, the equivalent residue in PTPRM, abolishes PTPRK dimer formation in vitro. This comparison of two members of the receptor tyrosine phosphatase family suggests that homophilic specificity is driven by a combination of shape complementarity and specific but limited sequence differences.
Assuntos
Proteínas Tirosina Fosfatases , Transdução de Sinais , Humanos , Adesão Celular , Linhagem Celular , Proteínas Tirosina Fosfatases/metabolismo , TirosinaRESUMO
[This corrects the article DOI: 10.1371/journal.ppat.1009824.].
RESUMO
The cell adhesion molecule L1 (L1CAM, L1 in short) plays crucial roles during neural development, regeneration after injury, synapse formation, synaptic plasticity and tumor cell migration. L1 belongs to the immunoglobulin superfamily and comprises in its extracellular part six immunoglobulin (Ig)-like domains and five fibronectin type III homologous repeats (FNs). The second Ig-like domain has been validated for self- (so-called homophilic) binding between cells. Antibodies against this domain inhibit neuronal migration in vitro and in vivo. The fibronectin type III homologous repeats FN2 and FN3 bind small molecule agonistic L1 mimetics and contribute to signal transduction. FN3 has a stretch of 25 amino acids that can be triggered with a monoclonal antibody, or the L1 mimetics, to enhance neurite outgrowth and neuronal cell migration in vitro and in vivo. To correlate the structural features of these FNs with function, we determined a high-resolution crystal structure of a FN2FN3 fragment, which is functionally active in cerebellar granule cells and binds several mimetics. The structure illustrates that both domains are connected by a short linker sequence allowing a flexible and largely independent organization of both domains. This becomes further evident by comparing the X-ray crystal structure with models derived from Small-Angle X-ray Scattering (SAXS) data for FN2FN3 in solution. Based on the X-ray crystal structure, we identified five glycosylation sites which we believe are crucial for folding and stability of these domains. Our study signifies an advance in the understanding of structure-functional relationships of L1.
Assuntos
Fibronectinas , Molécula L1 de Adesão de Célula Nervosa , Fibronectinas/fisiologia , Raios X , Espalhamento a Baixo Ângulo , Difração de Raios X , Anticorpos Monoclonais , Adesão Celular/fisiologia , NeuritosRESUMO
Sarcomeres, the basic contractile units of striated muscle cells, contain arrays of thin (actin) and thick (myosin) filaments that slide past each other during contraction. The Ig-like domain-containing protein myotilin provides structural integrity to Z-discs-the boundaries between adjacent sarcomeres. Myotilin binds to Z-disc components, including F-actin and α-actinin-2, but the molecular mechanism of binding and implications of these interactions on Z-disc integrity are still elusive. To illuminate them, we used a combination of small-angle X-ray scattering, cross-linking mass spectrometry, and biochemical and molecular biophysics approaches. We discovered that myotilin displays conformational ensembles in solution. We generated a structural model of the F-actin:myotilin complex that revealed how myotilin interacts with and stabilizes F-actin via its Ig-like domains and flanking regions. Mutant myotilin designed with impaired F-actin binding showed increased dynamics in cells. Structural analyses and competition assays uncovered that myotilin displaces tropomyosin from F-actin. Our findings suggest a novel role of myotilin as a co-organizer of Z-disc assembly and advance our mechanistic understanding of myotilin's structural role in Z-discs.
Assuntos
Actinas/metabolismo , Multimerização Proteica , Sarcômeros/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/genética , Animais , Células Cultivadas , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Humanos , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Contração Muscular/genética , Músculo Esquelético/metabolismo , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Multimerização Proteica/genética , Sarcômeros/genética , Tropomiosina/química , Tropomiosina/genética , Tropomiosina/metabolismoRESUMO
Calcium-binding RTX proteins are equipped with C-terminal secretion signals and translocate from the Ca(2+)-depleted cytosol of Gram-negative bacteria directly into the Ca(2+)-rich external milieu, passing through the "channel-tunnel" ducts of type I secretion systems (T1SSs). Using Bordetella pertussis adenylate cyclase toxin, we solved the structure of an essential C-terminal assembly that caps the RTX domains of RTX family leukotoxins. This is shown to scaffold directional Ca(2+)-dependent folding of the carboxy-proximal RTX repeat blocks into ß-rolls. The resulting intramolecular Brownian ratchets then prevent backsliding of translocating RTX proteins in the T1SS conduits and thereby accelerate excretion of very large RTX leukotoxins from bacterial cells by a vectorial "push-ratchet" mechanism. Successive Ca(2+)-dependent and cosecretional acquisition of a functional RTX toxin structure in the course of T1SS-mediated translocation, through RTX domain folding from the C-terminal cap toward the N terminus, sets a paradigm that opens for design of virulence inhibitors of major pathogens.
Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Cálcio/metabolismo , Bactérias Gram-Negativas/metabolismo , Sistemas de Secreção Tipo I/metabolismo , Toxina Adenilato Ciclase/química , Toxina Adenilato Ciclase/metabolismo , Animais , Bordetella pertussis/química , Bordetella pertussis/enzimologia , Linhagem Celular , Bactérias Gram-Negativas/química , Camundongos , Modelos Moleculares , Dobramento de Proteína , Estrutura Secundária de Proteína , Transporte ProteicoRESUMO
A critical quality attribute for liquid formulations is the absence of visible particles. Such particles may form upon polysorbate hydrolysis resulting in release of free fatty acids into solution followed by precipitation. Strategies to avoid this effect are of major interest for the pharmaceutical industry. In this context, we investigated the structural organization of polysorbate micelles alone and upon addition of the fatty acid myristic acid (MA) by small-angle x-ray scattering. Two complementary approaches using a model of polydisperse core-shell ellipsoidal micelles and an ensemble of quasiatomistic micelle structures gave consistent results well describing the experimental data. The small-angle x-ray scattering data reveal polydisperse mixtures of ellipsoidal micelles containing about 22-35 molecules per micelle. The addition of MA at concentrations up to 100 µg/mL reveals only marginal effects on the scattering data. At the same time, addition of high amounts of MA (>500 µg/mL) increases the average sizes of the micelles indicating that MA penetrates into the surfactant micelles. These results together with molecular modeling shed light on the polysorbate contribution to fatty acid solubilization preventing or delaying fatty acid particle formation.
Assuntos
Ácidos Graxos não Esterificados , Micelas , Polissorbatos , Espalhamento a Baixo Ângulo , Polissorbatos/química , Ácidos Graxos não Esterificados/química , Ácido Mirístico/química , Composição de MedicamentosRESUMO
In higher plants, long-distance RNA transport via the phloem is crucial for communication between distant plant tissues to align development with stress responses and reproduction. Several recent studies suggest that specific RNAs are among the potential long-distance information transmitters. However, it is yet not well understood how these RNAs enter the phloem stream, how they are transported, and how they are released at their destination. It was proposed that phloem RNA-binding proteins facilitate RNA translocation. In the present study, we characterized two orthologs of the phloem-associated RNA chaperone-like (PARCL) protein from Arabidopsis thaliana and Brassica napus at functional and structural levels. Microscale thermophoresis showed that these phloem-abundant proteins can bind a broad spectrum of RNAs and show RNA chaperone activity in FRET-based in vitro assays. Our SAXS experiments revealed a high degree of disorder, typical for RNA-binding proteins. In agroinfiltrated tobacco plants, eYFP-PARCL proteins mainly accumulated in nuclei and nucleoli and formed cytosolic and nuclear condensates. We found that formation of these condensates was impaired by tyrosine-to-glutamate mutations in the predicted prion-like domain (PLD), while C-terminal serine-to-glutamate mutations did not affect condensation but reduced RNA binding and chaperone activity. Furthermore, our in vitro experiments confirmed phase separation of PARCL and colocalization of RNA with the condensates, while mutation as well as phosphorylation of the PLD reduced phase separation. Together, our results suggest that RNA binding and condensate formation of PARCL can be regulated independently by modification of the C-terminus and/or the PLD.
Assuntos
Arabidopsis , Proteínas Intrinsicamente Desordenadas , Proteínas de Plantas , Proteínas de Ligação a RNA , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Brassica napus , Nicotiana , RNA de PlantasRESUMO
Herpes simplex virus (HSV)-1 dramatically alters the architecture and protein composition of cellular membranes during infection, but its effects upon membrane lipid composition remain unclear. HSV-1 pUL21 is a virus-encoded protein phosphatase adaptor that promotes dephosphorylation of multiple cellular and virus proteins, including the cellular ceramide (Cer) transport protein CERT. CERT mediates nonvesicular Cer transport from the endoplasmic reticulum to the trans-Golgi network, whereupon Cer is converted to sphingomyelin (SM) and other sphingolipids that play important roles in cellular proliferation, signaling, and membrane trafficking. Here, we use click chemistry to profile the kinetics of sphingolipid metabolism, showing that pUL21-mediated dephosphorylation activates CERT and accelerates Cer-to-SM conversion. Purified pUL21 and full-length CERT interact with submicromolar affinity, and we solve the solution structure of the pUL21 C-terminal domain in complex with the CERT Pleckstrin homology and steroidogenic acute regulatory-related lipid transfer domains using small-angle X-ray scattering. We identify a single amino acid mutation on the surface of pUL21 that disrupts CERT binding in vitro and in cultured cells. This residue is highly conserved across the genus Simplexvirus. In addition, we identify a pUL21 residue essential for binding to HSV-1 pUL16. Sphingolipid profiling demonstrates that Cer-to-SM conversion is severely diminished in the context of HSV-1 infection, a defect that is compounded when infecting with a virus encoding the mutated form of pUL21 that lacks the ability to activate CERT. However, virus replication and spread in cultured keratinocytes or epithelial cells is not significantly altered when pUL21-mediated CERT dephosphorylation is abolished. Collectively, we demonstrate that HSV-1 modifies sphingolipid metabolism via specific protein-protein interactions.
Assuntos
Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Serina-Treonina Quinases , Ceramidas/genética , Ceramidas/metabolismo , Esfingomielinas/metabolismo , Esfingolipídeos/metabolismo , Transporte Biológico/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Complexo de Golgi/metabolismoRESUMO
The herpes simplex virus (HSV)-1 protein pUL21 is essential for efficient virus replication and dissemination. While pUL21 has been shown to promote multiple steps of virus assembly and spread, the molecular basis of its function remained unclear. Here we identify that pUL21 is a virus-encoded adaptor of protein phosphatase 1 (PP1). pUL21 directs the dephosphorylation of cellular and virus proteins, including components of the viral nuclear egress complex, and we define a conserved non-canonical linear motif in pUL21 that is essential for PP1 recruitment. In vitro evolution experiments reveal that pUL21 antagonises the activity of the virus-encoded kinase pUS3, with growth and spread of pUL21 PP1-binding mutant viruses being restored in adapted strains where pUS3 activity is disrupted. This study shows that virus-directed phosphatase activity is essential for efficient herpesvirus assembly and spread, highlighting the fine balance between kinase and phosphatase activity required for optimal virus replication.
Assuntos
Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Replicação Viral , Animais , Chlorocebus aethiops , Células HEK293 , Herpesvirus Humano 1/enzimologia , Humanos , Monoéster Fosfórico Hidrolases/genética , Células Vero , Proteínas Virais/genética , Liberação de VírusRESUMO
Fully characterizing the post-translational modifications present in charge variants of therapeutic monoclonal antibodies (mAbs), particularly acidic variants, is challenging and remains an open area of investigation. In this study, to test the possibility that chromatographically separated acidic fractions of therapeutic mAbs contain conformational variants, we undertook a mAb refolding approach using as a case study an IgG1 that contains many unidentified acidic peaks with few post-translational modifications, and examined whether different acidic peak fractions could be generated corresponding to these variants. The IgG1 drug substance was denatured by guanidine hydrochloride, without a reducing agent present, and gradually refolded by stepwise dialysis against arginine hydrochloride used as an aggregation suppressor. Each acidic chromatographic peak originally contained in the IgG1 drug substance was markedly increased by this stepwise refolding process, indicating that these acidic variants are conformational variants. However, no conformational changes were detected by small-angle X-ray scattering experiments for the whole IgG1, indicating that the conformational changes are minor. Chromatographic, thermal and fluorescence analyses suggested that the conformational changes are a localized denaturation effect centred around the aromatic amino acid regions. This study provides new insights into the characterization of acidic variants that are currently not fully understood.
Assuntos
Anticorpos Monoclonais , Arginina , Cátions , Cromatografia , Imunoglobulina GRESUMO
This study combines molecular dynamics (MD) simulations with small angle x-ray scattering (SAXS) measurements to investigate the range of conformations that can be adopted by a pH/ionic strength (IS) sensitive protein and to quantify its distinct populations in solution. To explore how the conformational distribution of proteins may be modified in the environmental niches of biological media, we focus on the periplasmic ferric binding protein A (FbpA) from Haemophilus influenzae involved in the mechanism by which bacteria capture iron from higher organisms. We examine iron-binding/release mechanisms of FbpA in varying conditions simulating its biological environment. While we show that these changes fall within the detectable range for SAXS as evidenced by differences observed in the theoretical scattering patterns calculated from the crystal structure models of apo and holo forms, detection of conformational changes due to the point mutation D52A and changes in ionic strength (IS) from SAXS scattering profiles have been challenging. Here, to reach conclusions, statistical analyses with SAXS profiles and results from different techniques were combined in a complementary fashion. The SAXS data complemented by size exclusion chromatography point to multiple and/or alternative conformations at physiological IS, whereas they are well-explained by single crystallographic structures in low IS buffers. By fitting the SAXS data with unique conformations sampled by a series of MD simulations under conditions mimicking the buffers, we quantify the populations of the occupied substates. We also find that the D52A mutant that we predicted by coarse-grained computational modeling to allosterically control the iron binding site in FbpA, responds to the environmental changes in our experiments with conformational selection scenarios that differ from those of the wild type.
Assuntos
Proteínas de Bactérias , Simulação de Dinâmica Molecular , Espalhamento a Baixo Ângulo , Raios X , Difração de Raios X , FerroRESUMO
As the decline of malaria cases stalled over the last five years, novel targets in Plasmodium falciparum are necessary for the development of new drugs. Glycogen Synthase Kinase (PfGSK3) has been identified as a potential target, since its selective inhibitors were shown to disrupt the parasitès life cycle. In the uncanonical N-terminal region of the parasite enzyme, we identified several autophosphorylation sites and probed their role in activity regulation of PfGSK3. By combining molecular modeling with experimental small-angle X-ray scattering data, we show that increased PfGSK3 activity is promoted by conformational changes in the PfGSK3 N-terminus, triggered by N-terminal phosphorylation. Our work provides novel insights into the structure and regulation of the malarial PfGSK3.
Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Malária Falciparum/metabolismo , Modelos Moleculares , Plasmodium falciparum/enzimologia , Transdução de Sinais , Biologia Computacional/métodos , Ativação Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Malária Falciparum/parasitologia , Fosforilação , Espalhamento a Baixo Ângulo , Difração de Raios X/métodosRESUMO
The Protein Ensemble Database (PED) (https://proteinensemble.org), which holds structural ensembles of intrinsically disordered proteins (IDPs), has been significantly updated and upgraded since its last release in 2016. The new version, PED 4.0, has been completely redesigned and reimplemented with cutting-edge technology and now holds about six times more data (162 versus 24 entries and 242 versus 60 structural ensembles) and a broader representation of state of the art ensemble generation methods than the previous version. The database has a completely renewed graphical interface with an interactive feature viewer for region-based annotations, and provides a series of descriptors of the qualitative and quantitative properties of the ensembles. High quality of the data is guaranteed by a new submission process, which combines both automatic and manual evaluation steps. A team of biocurators integrate structured metadata describing the ensemble generation methodology, experimental constraints and conditions. A new search engine allows the user to build advanced queries and search all entry fields including cross-references to IDP-related resources such as DisProt, MobiDB, BMRB and SASBDB. We expect that the renewed PED will be useful for researchers interested in the atomic-level understanding of IDP function, and promote the rational, structure-based design of IDP-targeting drugs.