Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 196(19): 3441-51, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25049093

RESUMO

The cell envelope of Mycobacterium tuberculosis contains glycans and lipids of peculiar structure that play prominent roles in the biology and pathogenesis of tuberculosis. Consequently, the chemical structure and biosynthesis of the cell wall have been intensively investigated in order to identify novel drug targets. Here, we validate that the function of phosphatidyl-myo-inositol mannosyltransferase PimA is vital for M. tuberculosis in vitro and in vivo. PimA initiates the biosynthesis of phosphatidyl-myo-inositol mannosides by transferring a mannosyl residue from GDP-Man to phosphatidyl-myo-inositol on the cytoplasmic side of the plasma membrane. To prove the essential nature of pimA in M. tuberculosis, we constructed a pimA conditional mutant by using the TetR-Pip off system and showed that downregulation of PimA expression causes bactericidality in batch cultures. Consistent with the biochemical reaction catalyzed by PimA, this phenotype was associated with markedly reduced levels of phosphatidyl-myo-inositol dimannosides, essential structural components of the mycobacterial cell envelope. In addition, the requirement of PimA for viability was clearly demonstrated during macrophage infection and in two different mouse models of infection, where a dramatic decrease in viable counts was observed upon silencing of the gene. Notably, depletion of PimA resulted in complete clearance of the mouse lungs during both the acute and chronic phases of infection. Altogether, the experimental data highlight the importance of the phosphatidyl-myo-inositol mannoside biosynthetic pathway for M. tuberculosis and confirm that PimA is a novel target for future drug discovery programs.


Assuntos
Proteínas de Bactérias/metabolismo , Manosiltransferases/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose/microbiologia , Animais , Proteínas de Bactérias/genética , Feminino , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Manosiltransferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/genética , Fosfatidilinositóis/biossíntese
2.
Protein Expr Purif ; 100: 33-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24810911

RESUMO

Phosphatidylinositol mannosides are essential structural components of the mycobacterial cell envelope. They are implicated in host-pathogen interactions during infection and serve as a basis for biosynthesis of other unique molecules with immunomodulatory properties - mycobacterial lipopolysaccharides lipoarabinomannan and lipomannan. Acyltransferase Rv2611 is involved in one of the initial steps in the assembly of these molecules in Mycobacterium tuberculosis - the attachment of an acyl group to position-6 of the 2-linked mannosyl residue of the phosphatidylinositol mannoside anchor. Although the function of this enzyme was annotated 10 years ago, it has never been completely biochemically characterized due to lack of the pure protein. We have successfully overexpressed and purified MSMEG_2934, the ortholog of Rv2611c from the non-pathogenic model organism Mycobacteriumsmegmatis mc(2)155 using mycobacterial pJAM2 expression system, which allowed confirmation of its in vitro acyltransferase activity, and establishment of its substrate specificity.


Assuntos
Aciltransferases/metabolismo , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium smegmatis/enzimologia , Fosfatidilinositóis/metabolismo , Acilação , Aciltransferases/análise , Aciltransferases/genética , Aciltransferases/isolamento & purificação , Sequência de Aminoácidos , Parede Celular/química , Parede Celular/metabolismo , Cromatografia de Afinidade , Clonagem Molecular , Escherichia coli/genética , Humanos , Dados de Sequência Molecular , Mycobacterium smegmatis/química , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/enzimologia , Fosfatidilinositóis/química , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
3.
Antimicrob Agents Chemother ; 53(9): 4015-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19581465

RESUMO

Nosocomial outbreaks attributable to glutaraldehyde-resistant, rapidly growing mycobacteria are increasing. Here, evidence is provided that defects in porin expression dramatically increase the resistance of Mycobacterium smegmatis and Mycobacterium chelonae to glutaraldehyde and another aldehyde disinfectant, ortho-phthalaldehyde. Since defects in porin activity also dramatically increased the resistance of M. chelonae to drugs, there is thus some concern that the widespread use of glutaraldehyde and ortho-phthalaldehyde in clinical settings may select for drug-resistant bacteria.


Assuntos
Antituberculosos/farmacologia , Desinfetantes/farmacologia , Glutaral/farmacologia , Mycobacterium chelonae/efeitos dos fármacos , Mycobacterium chelonae/genética , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/genética , Porinas/fisiologia , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mutação , Porinas/genética , o-Ftalaldeído/farmacologia
4.
Nat Commun ; 7: 10906, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26965057

RESUMO

The biosynthesis of phospholipids and glycolipids are critical pathways for virtually all cell membranes. PatA is an essential membrane associated acyltransferase involved in the biosynthesis of mycobacterial phosphatidyl-myo-inositol mannosides (PIMs). The enzyme transfers a palmitoyl moiety from palmitoyl-CoA to the 6-position of the mannose ring linked to 2-position of inositol in PIM1/PIM2. We report here the crystal structures of PatA from Mycobacterium smegmatis in the presence of its naturally occurring acyl donor palmitate and a nonhydrolyzable palmitoyl-CoA analog. The structures reveal an α/ß architecture, with the acyl chain deeply buried into a hydrophobic pocket that runs perpendicular to a long groove where the active site is located. Enzyme catalysis is mediated by an unprecedented charge relay system, which markedly diverges from the canonical HX4D motif. Our studies establish the mechanistic basis of substrate/membrane recognition and catalysis for an important family of acyltransferases, providing exciting possibilities for inhibitor design.


Assuntos
Aciltransferases/metabolismo , Mycobacterium smegmatis/metabolismo , Aciltransferases/química , Catálise , Domínio Catalítico , Membrana Celular/metabolismo , Cristalografia por Raios X , Manosídeos/biossíntese , Mycobacterium smegmatis/química , Palmitatos/metabolismo , Palmitoil Coenzima A/metabolismo , Fosfatidilinositóis/biossíntese , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
5.
Chem Biol ; 22(1): 63-75, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25544046

RESUMO

A combination of chemical genetic and biochemical assays was applied to investigate the mechanism of action of the anticancer drug 5-fluorouracil (5-FU), against Mycobacterium tuberculosis (Mtb). 5-FU resistance was associated with mutations in upp or pyrR. Upp-catalyzed conversion of 5-FU to FUMP was shown to constitute the first step in the mechanism of action, and resistance conferred by nonsynonymous SNPs in pyrR shown to be due to derepression of the pyr operon and rescue from the toxic effects of FUMP and downstream antimetabolites through de novo production of UMP. 5-FU-derived metabolites identified in Mtb were consistent with the observed incorporation of 5-FU into RNA and DNA and the reduced amount of mycolyl arabinogalactan peptidoglycan in 5-FU-treated cells. Conditional depletion of the essential thymidylate synthase ThyX resulted in modest hypersensitivity to 5-FU, implicating inhibition of ThyX by fluorodeoxyuridylate as a further component of the mechanism of antimycobacterial action of this drug.


Assuntos
Antimetabólitos/metabolismo , Fluoruracila/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antimetabólitos/química , Antimetabólitos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Radioisótopos de Carbono/química , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Fluoruracila/química , Fluoruracila/farmacologia , Marcação por Isótopo , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Óperon , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Timidilato Sintase/genética , Timidilato Sintase/metabolismo
6.
ACS Chem Biol ; 10(7): 1631-6, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25906160

RESUMO

The flavo-enzyme DprE1 catalyzes a key epimerization step in the decaprenyl-phosphoryl d-arabinose (DPA) pathway, which is essential for mycobacterial cell wall biogenesis and targeted by several new tuberculosis drug candidates. Here, using differential radiolabeling with DPA precursors and high-resolution fluorescence microscopy, we disclose the unexpected extracytoplasmic localization of DprE1 and periplasmic synthesis of DPA. Collectively, this explains the vulnerability of DprE1 and the remarkable potency of the best inhibitors.


Assuntos
Oxirredutases do Álcool/análise , Oxirredutases do Álcool/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/enzimologia , Tuberculose/microbiologia , Parede Celular/efeitos dos fármacos , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico
7.
Tuberculosis (Edinb) ; 95 Suppl 1: S200-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25801335

RESUMO

Discovering new drugs to treat tuberculosis more efficiently and to overcome multidrug resistance is a world health priority. To find novel antitubercular agents several approaches have been used in various institutions worldwide, including target-based approaches against several validated mycobacterial enzymes and phenotypic screens. We screened more than 17,000 compounds from Vichem's Nested Chemical Library™ using an integrated strategy involving whole cell-based assays with Corynebacterium glutamicum and Mycobacterium tuberculosis, and target-based assays with protein kinases PknA, PknB and PknG as well as other targets such as PimA and bacterial topoisomerases simultaneously. With the help of the target-based approach we have found very potent hits inhibiting the selected target enzymes, but good minimal inhibitory concentrations (MIC) against M. tuberculosis were not achieved. Focussing on the whole cell-based approach several potent hits were found which displayed minimal inhibitory concentrations (MIC) against M. tuberculosis below 10 µM and were non-mutagenic, non-cytotoxic and the targets of some of the hits were also identified. The most active hits represented various scaffolds. Medicinal chemistry-based lead optimization was performed applying various strategies and, as a consequence, a series of novel potent compounds were synthesized. These efforts resulted in some effective potential antitubercular lead compounds which were confirmed in phenotypic assays.


Assuntos
Antituberculosos/isolamento & purificação , Desenho de Fármacos , Bibliotecas de Moléculas Pequenas , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , DNA Girase/efeitos dos fármacos , DNA Topoisomerases/efeitos dos fármacos , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Manosiltransferases/antagonistas & inibidores , Testes de Sensibilidade Microbiana , Terapia de Alvo Molecular/métodos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/isolamento & purificação , Inibidores da Topoisomerase/química , Inibidores da Topoisomerase/isolamento & purificação
8.
Chem Biol ; 22(7): 917-27, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26097035

RESUMO

To combat the emergence of drug-resistant strains of Mycobacterium tuberculosis, new antitubercular agents and novel drug targets are needed. Phenotypic screening of a library of 594 hit compounds uncovered two leads that were active against M. tuberculosis in its replicating, non-replicating, and intracellular states: compounds 7947882 (5-methyl-N-(4-nitrophenyl)thiophene-2-carboxamide) and 7904688 (3-phenyl-N-[(4-piperidin-1-ylphenyl)carbamothioyl]propanamide). Mutants resistant to both compounds harbored mutations in ethA (rv3854c), the gene encoding the monooxygenase EthA, and/or in pyrG (rv1699) coding for the CTP synthetase, PyrG. Biochemical investigations demonstrated that EthA is responsible for the activation of the compounds, and by mass spectrometry we identified the active metabolite of 7947882, which directly inhibits PyrG activity. Metabolomic studies revealed that pharmacological inhibition of PyrG strongly perturbs DNA and RNA biosynthesis, and other metabolic processes requiring nucleotides. Finally, the crystal structure of PyrG was solved, paving the way for rational drug design with this newly validated drug target.


Assuntos
Antituberculosos/farmacologia , Carbono-Nitrogênio Ligases/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/metabolismo , Tiofenos/farmacologia , Ativação Metabólica , Animais , Antituberculosos/química , Proteínas de Bactérias/metabolismo , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Células Hep G2 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Oxirredutases/química , Conformação Proteica , Tiofenos/química
9.
J Biol Chem ; 282(28): 20705-14, 2007 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-17510062

RESUMO

Mycobacterial phosphatidylinositol mannosides (PIMs) and metabolically derived cell wall lipoglycans play important roles in host-pathogen interactions, but their biosynthetic pathways are poorly understood. Here we focus on Mycobacterium smegmatis PimA, an essential enzyme responsible for the initial mannosylation of phosphatidylinositol. The structure of PimA in complex with GDP-mannose shows the two-domain organization and the catalytic machinery typical of GT-B glycosyltransferases. PimA is an amphitrophic enzyme that binds mono-disperse phosphatidylinositol, but its transferase activity is stimulated by high concentrations of non-substrate anionic surfactants, indicating that the early stages of PIM biosynthesis involve lipid-water interfacial catalysis. Based on structural, calorimetric, and mutagenesis studies, we propose a model wherein PimA attaches to the membrane through its N-terminal domain, and this association leads to enzyme activation. Our results reveal a novel mode of phosphatidylinositol recognition and provide a template for the development of potential antimycobacterial compounds.


Assuntos
Proteínas de Bactérias/química , Manosiltransferases/química , Proteínas de Membrana/química , Modelos Moleculares , Mycobacterium smegmatis/enzimologia , Fosfatidilinositóis/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Manosiltransferases/genética , Manosiltransferases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênese , Mycobacterium smegmatis/genética , Fosfatidilinositóis/genética , Fosfatidilinositóis/metabolismo , Estrutura Terciária de Proteína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA