Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Protein Expr Purif ; 128: 29-35, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27498022

RESUMO

Protein purification is often a bottleneck during protein generation for large molecule drug discovery. Therapeutic antibody campaigns typically require the purification of hundreds of monoclonal antibodies (mAbs) during the hybridoma process and lead optimization. With the increase in high-throughput cloning, faster DNA sequencing, and the use of parallel protein expression systems, a need for high-throughput purification approaches has evolved, particularly in the midsize range between 20 ml and 100 ml. To address this we modified a four channel Gilson solid phase extraction system (referred to as MG-SPE) with switching valves and sample holding loops to be able to perform standard affinity purification using commercially available columns and micro-titer format deep well blocks. By running 4 samples in parallel, the MG-SPE has the capacity to purify up to 24 samples of greater than 50 ml each using a single-step affinity purification protocol or a two-step protocol consisting of affinity chromatography followed by desalting/buffer exchange overnight (∼12 h run time). Our evaluation of affinity purification using mAbs and Fc-fusion proteins from mammalian cell supernatants demonstrates that the MG-SPE compared favorably with industry standard systems for both protein quality and yield. Overall the system is simple to operate and fills a void in purification processes where a simple, efficient, automated system is needed for affinity purification of midsize research samples.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Cromatografia de Afinidade/métodos , Imunoglobulina G/isolamento & purificação , Anticorpos Monoclonais/biossíntese , Células HEK293 , Humanos , Imunoglobulina G/biossíntese
2.
Biochem J ; 453(2): 241-7, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23679895

RESUMO

H3K27 (histone H3 Lys27) methylation is an important epigenetic modification that regulates gene transcription. In humans, EZH (enhancer of zeste homologue) 1 and EZH2 are the only enzymes capable of catalysing methylation of H3K27. There is great interest in understanding structure-function relationships for EZH2, as genetic alterations in this enzyme are thought to play a causal role in a number of human cancers. EZH2 is challenging to study because it is only active in the context of the multi-subunit PRC2 (polycomb repressive complex 2). vSET is a viral lysine methyltransferase that represents the smallest protein unit capable of catalysing H3K27 methylation. The crystal structure of this minimal catalytic protein has been solved and researchers have suggested that vSET might prove useful as an EZH2 surrogate for the development of active site-directed inhibitors. To test this proposition, we conducted comparative enzymatic analysis of human EZH2 and vSET and report that, although both enzymes share similar preferences for methylation of H3K27, they diverge in terms of their permissiveness for catalysing methylation of alternative histone lysine sites, their relative preferences for utilization of multimeric macromolecular substrates, their active site primary sequences and, most importantly, their sensitivity to inhibition by drug-like small molecules. The cumulative data led us to suggest that EZH2 and vSET have very distinct active site structures, despite the commonality of the reaction catalysed by the two enzymes. Hence, the EZH2 and vSET pair of enzymes represent an example of convergent evolution in which distinct structural solutions have developed to solve a common catalytic need.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Sequência de Aminoácidos , Biocatálise , Humanos , Metilação , Metiltransferases/química , Metiltransferases/metabolismo , Dados de Sequência Molecular , Complexo Repressor Polycomb 2/química , Conformação Proteica , Homologia de Sequência de Aminoácidos
3.
Cancer Discov ; 14(7): 1190-1205, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588399

RESUMO

Alterations in the RAS-MAPK signaling cascade are common across multiple solid tumor types and are a driver for many cancers. NST-628 is a potent pan-RAF-MEK molecular glue that prevents the phosphorylation and activation of MEK by RAF, overcoming the limitations of traditional RAS-MAPK inhibitors and leading to deep durable inhibition of the pathway. Cellular, biochemical, and structural analyses of RAF-MEK complexes show that NST-628 engages all isoforms of RAF and prevents the formation of BRAF-CRAF heterodimers, a differentiated mechanism from all current RAF inhibitors. With a potent and durable inhibition of the RAF-MEK signaling complex as well as high intrinsic permeability into the brain, NST-628 demonstrates broad efficacy in cellular and patient-derived tumor models harboring diverse MAPK pathway alterations, including orthotopic intracranial models. Given its functional and pharmacokinetic mechanisms that are differentiated from previous therapies, NST-628 is positioned to make an impact clinically in areas of unmet patient need. Significance: This study introduces NST-628, a molecular glue having differentiated mechanism and drug-like properties. NST-628 treatment leads to broad efficacy with high tolerability and central nervous system activity across multiple RAS- and RAF-driven tumor models. NST-628 has the potential to provide transformative clinical benefits as both monotherapy and vertical combination anchor.


Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias , Inibidores de Proteínas Quinases , Humanos , Animais , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Quinases raf/metabolismo , Quinases raf/antagonistas & inibidores , Linhagem Celular Tumoral , Proteínas ras/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
4.
RSC Chem Biol ; 3(7): 972-982, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35866162

RESUMO

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a central enzyme in glycolysis that regulates the Warburg effect in cancer cells. In addition to its role in metabolism, GAPDH is also implicated in diverse cellular processes, including transcription and apoptosis. Dysregulated GAPDH activity is associated with a variety of pathologies, and GAPDH inhibitors have demonstrated therapeutic potential as anticancer and immunomodulatory agents. Given the critical role of GAPDH in pathophysiology, it is important to have access to tools that enable rapid monitoring of GAPDH activity and inhibition within a complex biological system. Here, we report an electrophilic peptide-based probe, SEC1, which covalently modifies the active-site cysteine, C152, of GAPDH to directly report on GAPDH activity within a proteome. We demonstrate the utility of SEC1 to assess changes in GAPDH activity in response to oncogenic transformation, reactive oxygen species (ROS) and small-molecule GAPDH inhibitors, including Koningic acid (KA). We then further evaluated KA, to determine the detailed mechanism of inhibition. Our mechanistic studies confirm that KA is a highly effective irreversible inhibitor of GAPDH, which acts through a NAD+-uncompetitive and G3P-competitive mechanism. Proteome-wide evaluation of the cysteine targets of KA demonstrated high selectivity for the active-site cysteine of GAPDH over other reactive cysteines within the proteome. Lastly, the therapeutic potential of KA was investigated in an autoimmune model, where treatment with KA resulted in decreased cytokine production by Th1 effector cells. Together, these studies describe methods to evaluate GAPDH activity and inhibition within a proteome, and report on the high potency and selectivity of KA as an irreversible inhibitor of GAPDH.

5.
J Med Chem ; 64(7): 3911-3939, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33755451

RESUMO

Protein arginine methyltransferase 5 (PRMT5) is a type II arginine methyltransferase that catalyzes the post-translational symmetric dimethylation of protein substrates. PRMT5 plays a critical role in regulating biological processes including transcription, cell cycle progression, RNA splicing, and DNA repair. As such, dysregulation of PRMT5 activity is implicated in the development and progression of multiple cancers and is a target of growing clinical interest. Described herein are the structure-based drug designs, robust synthetic efforts, and lead optimization strategies toward the identification of two novel 5,5-fused bicyclic nucleoside-derived classes of potent and efficacious PRMT5 inhibitors. Utilization of compound docking and strain energy calculations inspired novel designs, and the development of flexible synthetic approaches enabled access to complex chemotypes with five contiguous stereocenters. Additional efforts in balancing bioavailability, solubility, potency, and CYP3A4 inhibition led to the identification of diverse lead compounds with favorable profiles, promising in vivo activity, and low human dose projections.


Assuntos
Aminoquinolinas/uso terapêutico , Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Nucleosídeos/uso terapêutico , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Aminoquinolinas/síntese química , Aminoquinolinas/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Feminino , Humanos , Camundongos SCID , Simulação de Acoplamento Molecular , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/metabolismo , Ligação Proteica , Proteína-Arginina N-Metiltransferases/metabolismo , Relação Estrutura-Atividade
6.
SLAS Discov ; 24(2): 142-157, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30204533

RESUMO

The Myc oncogene is overexpressed in many cancers, yet targeting it for cancer therapy has remained elusive. One strategy for inhibition of Myc expression is through stabilization of the G-quadruplex (G4), a G-rich DNA secondary structure found within the Myc promoter; stabilization of G4s has been shown to halt transcription of downstream gene products. Here we used the Automated Ligand Identification System (ALIS), an affinity selection-mass spectrometry method, to identify compounds that bind to the Myc G4 out of a pool of compounds that had previously been shown to inhibit Myc expression in a reporter screen. Using an ALIS-based screen, we identified hits that bound to the Myc G4, a small subset of which bound preferentially relative to G4s from the promoters of five other genes. To determine functionality and specificity of the Myc G4-binding compounds in cell-based assays, we compared inhibition of Myc expression in cells with and without Myc G4 regulation. Several compounds inhibited Myc expression only in the Myc G4-containing line, and one compound was verified to function through Myc G4 binding. Our study demonstrates that ALIS can be used to identify selective nucleic acid-binding compounds from phenotypic screen hits, increasing the pool of drug targets beyond proteins.


Assuntos
Quadruplex G , Espectrometria de Massas/métodos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linhagem Celular , Proliferação de Células , Avaliação Pré-Clínica de Medicamentos , Éxons/genética , Humanos , Ligantes , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
ACS Chem Biol ; 9(11): 2459-64, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25154026

RESUMO

EZH2 and EZH1 are protein methyltransferases (PMTs) responsible for histone H3, lysine 27 (H3K27) methylation. Trimethylation of H3K27 (H3K27me3) is a hallmark of many cancers, including non-Hodgkin lymphoma (NHL). Heterozygous EZH2 point mutations at Tyr641, Ala677, and Ala687 have been observed in NHL. The Tyr641 mutations enhance activity on H3K27me2 but have weak or no activity on unmethylated H3K27, whereas the Ala677 and Ala687 mutations use substrates of all methylation states effectively. It has been proposed that enzymatic coupling of the wild-type and mutant enzymes leads to the oncogenic H3K27me3 mark in mutant-bearing NHL. We show that coupling with the wild-type enzyme is needed to achieve H3K27me3 for several mutants, but that others are capable of achieving H3K27me3 on their own. All forms of PRC2 (wild-type and mutants) display kinetic signatures that are consistent with a distributive mechanism of catalysis.


Assuntos
Mutação , Neoplasias/genética , Complexo Repressor Polycomb 2/química , Proteína Potenciadora do Homólogo 2 de Zeste , Humanos , Complexo Repressor Polycomb 2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA