RESUMO
The contagious prion disease "chronic wasting disease" (CWD) infects mule deer (Odocoileus hemionus) and related species. Unchecked epidemics raise ecological, socioeconomic, and public health concerns. Prion infection shortens a deer's lifespan, and when prevalence (proportion of adults infected) becomes sufficiently high CWD can affect herd dynamics. Understanding population responses over time is key to forecasting long-term impacts. Here we describe unexpected stability in prevalence and abundance in a mule deer herd where CWD has been left unmanaged. High apparent prevalence (~30%) since at least 2005 likely drove observed changes in the proportion and age distribution of wild-type native prion protein (PRNP) gene homozygotes among deer sampled. Predation by mountain lions (Puma concolor) may be helping keep CWD in check. Despite stable appearances, prion disease nonetheless impairs adult survival and likely resilience in this deer herd, limiting its potential for growth despite refuge from hunter harvest and favorable habitat and winter conditions.
Assuntos
Cervos , Doença de Emaciação Crônica/epidemiologia , Fatores Etários , Animais , Feminino , Masculino , Dinâmica Populacional , Comportamento Predatório , Prevalência , Doença de Emaciação Crônica/mortalidadeRESUMO
Chronic wasting disease (CWD), a prion disease of mule deer (Odocoileus hemionus), accelerates mortality and in so doing has the potential to influence population dynamics. Although effects on mule deer survival are clear, how CWD affects recruitment is less certain. We studied how prion infection influenced the number of offspring raised to weaning per adult (≥2 yr old) female mule deer and subsequently the estimated growth rate (λ) of an infected deer herd. Infected and presumably uninfected radio-collared female deer were observed with their fawns in late summer (August-September) during three consecutive years (2006-2008) in the Table Mesa area of Boulder, Colorado, USA. We counted the number of fawns accompanying each female, then used a fully Bayesian model to estimate recruitment by infected and uninfected females and the effect of the disease on λ. On average, infected females weaned 0.95 fawns (95% credible interval=0.56-1.43) whereas uninfected females weaned 1.34 fawns (95% credible interval=1.09-1.61); the probability that uninfected females weaned more fawns than infected females was 0.93). We used estimates of prevalence to weight recruitment and survival parameters in the transition matrix of a three-age, single-sex matrix model and then used the matrix to calculate effects of CWD on λ. When effects of CWD on both survival and recruitment were included, the modeled λ was 0.97 (95% credible interval = 0.82-1.09). Effects of disease on λ were mediated almost entirely by elevated mortality of infected animals. We conclude that although CWD may affect mule deer recruitment, these effects seem to be sufficiently small that they can be omitted in estimating the influences of CWD on population growth rate.
Assuntos
Cervos , Doença de Emaciação Crônica/epidemiologia , Animais , Animais Selvagens , Colorado/epidemiologia , Feminino , Masculino , Dinâmica Populacional , Crescimento Demográfico , Doença de Emaciação Crônica/mortalidade , DesmameRESUMO
BACKGROUND: Contagious prion diseases--scrapie of sheep and chronic wasting disease of several species in the deer family--give rise to epidemics that seem capable of compromising host population viability. Despite this prospect, the ecological consequences of prion disease epidemics in natural populations have received little consideration. METHODOLOGY/PRINCIPAL FINDINGS: Using a cohort study design, we found that prion infection dramatically lowered survival of free-ranging adult (>2-year-old) mule deer (Odocoileus hemionus): estimated average life expectancy was 5.2 additional years for uninfected deer but only 1.6 additional years for infected deer. Prion infection also increased nearly fourfold the rate of mountain lions (Puma concolor) preying on deer, suggesting that epidemics may alter predator-prey dynamics by facilitating hunting success. Despite selective predation, about one fourth of the adult deer we sampled were infected. High prevalence and low survival of infected deer provided a plausible explanation for the marked decline in this deer population since the 1980s. CONCLUSION: Remarkably high infection rates sustained in the face of intense predation show that even seemingly complete ecosystems may offer little resistance to the spread and persistence of contagious prion diseases. Moreover, the depression of infected populations may lead to local imbalances in food webs and nutrient cycling in ecosystems in which deer are important herbivores.