RESUMO
Stroke is a multiphasic process in which initial cerebral ischemia is followed by secondary injury from immune responses to ischemic brain components. Here we demonstrate that peripheral CD11b+CD45+ myeloid cells magnify stroke injury via activation of triggering receptor expressed on myeloid cells 1 (TREM1), an amplifier of proinflammatory innate immune responses. TREM1 was induced within hours after stroke peripherally in CD11b+CD45+ cells trafficking to ischemic brain. TREM1 inhibition genetically or pharmacologically improved outcome via protective antioxidant and anti-inflammatory mechanisms. Positron electron tomography imaging using radiolabeled antibody recognizing TREM1 revealed elevated TREM1 expression in spleen and, unexpectedly, in intestine. In the lamina propria, noradrenergic-dependent increases in gut permeability induced TREM1 on inflammatory Ly6C+MHCII+ macrophages, further increasing epithelial permeability and facilitating bacterial translocation across the gut barrier. Thus, following stroke, peripheral TREM1 induction amplifies proinflammatory responses to both brain-derived and intestinal-derived immunogenic components. Critically, targeting this specific innate immune pathway reduces cerebral injury.
Assuntos
Encéfalo/imunologia , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Acidente Vascular Cerebral/patologia , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Animais , Encéfalo/citologia , Linhagem Celular , Imunidade Inata/imunologia , Inflamação/patologia , Mucosa Intestinal/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células RAW 264.7RESUMO
Parkinson's disease is the second most common neurodegenerative disease after Alzheimer's disease and affects 1% of the population above 60 years old. Although Parkinson's disease commonly manifests with motor symptoms, a majority of patients with Parkinson's disease subsequently develop cognitive impairment, which often progresses to dementia, a major cause of morbidity and disability. Parkinson's disease is characterized by α-synuclein accumulation that frequently associates with amyloid-ß and tau fibrils, the hallmarks of Alzheimer's disease neuropathological changes; this co-occurrence suggests that onset of cognitive decline in Parkinson's disease may be associated with appearance of pathological amyloid-ß and/or tau. Recent studies have highlighted the appearance of the soluble form of the triggering receptor expressed on myeloid cells 2 (sTREM2) receptor in CSF during development of Alzheimer's disease. Given the known association of microglial activation with advancing Parkinson's disease, we investigated whether CSF and/or plasma sTREM2 differed between CSF biomarker-defined Parkinson's disease participant subgroups. In this cross-sectional study, we examined 165 participants consisting of 17 cognitively normal elderly subjects, 45 patients with Parkinson's disease with no cognitive impairment, 86 with mild cognitive impairment, and 17 with dementia. Stratification of subjects by CSF amyloid-ß and tau levels revealed that CSF sTREM2 concentrations were elevated in Parkinson's disease subgroups with a positive tau CSF biomarker signature, but not in Parkinson's disease subgroups with a positive CSF amyloid-ß biomarker signature. These findings indicate that CSF sTREM2 could serve as a surrogate immune biomarker of neuronal injury in Parkinson's disease.
Assuntos
Peptídeos beta-Amiloides/líquido cefalorraquidiano , Glicoproteínas de Membrana/sangue , Glicoproteínas de Membrana/líquido cefalorraquidiano , Doença de Parkinson/sangue , Doença de Parkinson/líquido cefalorraquidiano , Receptores Imunológicos/sangue , Proteínas tau/líquido cefalorraquidiano , Idoso , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/sangue , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/complicações , Estudos Transversais , Demência/sangue , Demência/líquido cefalorraquidiano , Demência/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/classificação , Doença de Parkinson/complicaçõesRESUMO
Human genetics implicate defective myeloid responses in the development of late-onset Alzheimer disease. A decline in peripheral and brain myeloid metabolism, triggering maladaptive immune responses, is a feature of aging. The role of TREM1, a pro-inflammatory factor, in neurodegenerative diseases is unclear. Here we show that Trem1 deficiency prevents age-dependent changes in myeloid metabolism, inflammation and hippocampal memory function in mice. Trem1 deficiency rescues age-associated declines in ribose 5-phosphate. In vitro, Trem1-deficient microglia are resistant to amyloid-ß42 oligomer-induced bioenergetic changes, suggesting that amyloid-ß42 oligomer stimulation disrupts homeostatic microglial metabolism and immune function via TREM1. In the 5XFAD mouse model, Trem1 haploinsufficiency prevents spatial memory loss, preserves homeostatic microglial morphology, and reduces neuritic dystrophy and changes in the disease-associated microglial transcriptomic signature. In aging APPSwe mice, Trem1 deficiency prevents hippocampal memory decline while restoring synaptic mitochondrial function and cerebral glucose uptake. In postmortem Alzheimer disease brain, TREM1 colocalizes with Iba1+ cells around amyloid plaques and its expression is associated with Alzheimer disease clinical and neuropathological severity. Our results suggest that TREM1 promotes cognitive decline in aging and in the context of amyloid pathology.
Assuntos
Envelhecimento , Doença de Alzheimer , Modelos Animais de Doenças , Metabolismo Energético , Microglia , Receptor Gatilho 1 Expresso em Células Mieloides , Animais , Camundongos , Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Cognição/fisiologia , Metabolismo Energético/fisiologia , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/genéticaRESUMO
BACKGROUND: The recent promise of disease-modifying therapies for Alzheimer's disease (AD) has reinforced the need for accurate biomarkers for early disease detection, diagnosis and treatment monitoring. Advances in the development of novel blood-based biomarkers for AD have revealed that plasma levels of tau phosphorylated at various residues are specific and sensitive to AD dementia. However, the currently available tests have shortcomings in access, throughput, and scalability that limit widespread implementation. METHODS: We evaluated the diagnostic and prognostic performance of a high-throughput and fully-automated Lumipulse plasma p-tau181 assay for the detection of AD. Plasma from older clinically unimpaired individuals (CU, n = 463) and patients with mild cognitive impairment (MCI, n = 107) or AD dementia (n = 78) were obtained from the longitudinal Stanford University Alzheimer's Disease Research Center (ADRC) and the Stanford Aging and Memory Study (SAMS) cohorts. We evaluated the discriminative accuracy of plasma p-tau181 for clinical AD diagnosis, association with amyloid ß peptides and p-tau181 concentrations in CSF, association with amyloid positron emission tomography (PET), and ability to predict longitudinal cognitive and functional change. RESULTS: The assay showed robust performance in differentiating AD from control participants (AUC 0.959, CI: 0.912 to 0.990), and was strongly associated with CSF p-tau181, CSF Aß42/Aß40 ratio, and amyloid-PET global SUVRs. Associations between plasma p-tau181 with CSF biomarkers were significant when examined separately in Aß+ and Aß- groups. Plasma p-tau181 significantly increased over time in CU and AD diagnostic groups. After controlling for clinical diagnosis, age, sex, and education, baseline plasma p-tau181 predicted change in MoCA overall and change in CDR Sum of Boxes in the AD group over follow-up of up to 5 years. CONCLUSIONS: This fully-automated and available blood-based biomarker assay therefore may be useful for early detection, diagnosis, prognosis, and treatment monitoring of AD.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Biomarcadores , Disfunção Cognitiva/diagnóstico por imagem , Proteínas tauRESUMO
OBJECTIVE: To determine whether memory tasks with demonstrated sensitivity to hippocampal function can detect variance related to preclinical Alzheimer disease (AD) biomarkers, we examined associations between performance in 3 memory tasks and CSF ß-amyloid (Aß)42/Aß40 and phosopho-tau181 (p-tau181) in cognitively unimpaired older adults (CU). METHODS: CU enrolled in the Stanford Aging and Memory Study (n = 153; age 68.78 ± 5.81 years; 94 female) completed a lumbar puncture and memory assessments. CSF Aß42, Aß40, and p-tau181 were measured with the automated Lumipulse G system in a single-batch analysis. Episodic memory was assayed using a standardized delayed recall composite, paired associate (word-picture) cued recall, and a mnemonic discrimination task that involves discrimination between studied "target" objects, novel "foil" objects, and perceptually similar "lure" objects. Analyses examined cross-sectional relationships among memory performance, age, and CSF measures, controlling for sex and education. RESULTS: Age and lower Aß42/Aß40 were independently associated with elevated p-tau181. Age, Aß42/Aß40, and p-tau181 were each associated with (1) poorer associative memory and (2) diminished improvement in mnemonic discrimination performance across levels of decreased task difficulty (i.e., target-lure similarity). P-tau mediated the effect of Aß42/Aß40 on memory. Relationships between CSF proteins and delayed recall were similar but nonsignificant. CSF Aß42 was not significantly associated with p-tau181 or memory. CONCLUSIONS: Tests designed to tax hippocampal function are sensitive to subtle individual differences in memory among CU and correlate with early AD-associated biomarker changes in CSF. These tests may offer utility for identifying CU with preclinical AD pathology.