Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37686896

RESUMO

Flexible perovskite solar cells introduce opportunities for high throughput, high specific weight, and short energy payback time photovoltaics. However, they require additional investigation into their mechanical resiliency. This work investigates the mechanical properties and behaviors of perovskite thin films and builds a robust model for future research. A two-pronged approach was utilized. Perovskite thin films were flexed in a three-point bend mode with in-situ SEM. Novel insights into the perovskite mechanical behaviors with varying substrate layers were gained. Modeling and validation, the second prong, was completed with finite element analysis. Model coupons of the imaged perovskite architectures were built, with sensitivity analysis completed to provide mechanical property estimates. The results demonstrate that mechanical degradation of perovskite thin films on polyethylene terephthalate (PET) primarily presents as a crack in the grain boundaries between crystals. Perovskite thin films on Indium Tin Oxide (ITO) and PET primarily crack in a periodic pattern regardless of the placement of perovskite crystals.

2.
Materials (Basel) ; 13(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977502

RESUMO

Microstructures of typical carbon fibers (CFs) from polyacrylonitrile (PAN) and pitch-based precursors were studied using a novel digital twin approach with individual carbon fibers for a local crystal scale model. The transmission electron microscopy (TEM) samples were prepared using a focused-ion beam (FIB) for both longitudinal and transverse directions of carbon fibers. Measurements of the crystal size and orientation were estimated from X-ray scattering. TEM imaging of graphitic packing facilitated further comprehension of associations between processing and final material properties, which could enable customization of microstructures for property targets. Then the detailed microstructural information and their X-ray scattering properties were incorporated into the simulation model of an individual carbon fiber. Assuming that graphene properties are the same among different forms of carbon fiber, a reasonable physics-based explanation for such a drastic decrease in strength is the dislocations between the graphitic units. The model reveals critical defects and uncertainty of carbon fiber microstructures, including skin/core alignment differences and propagating fracture before ultimate failure. The models are the first to quantify microstructures at the crystal scale with micromechanics and to estimate tensile and compressive mechanical properties of carbon fiber materials, as well as potentially develop new fundamental understandings for tailoring carbon fiber and composites properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA