Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 38: 104-114, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28633809

RESUMO

High-frequency ultrasound standing waves (megasonics) have been demonstrated to enhance oil separation in the palm oil process at an industrial level. This work investigated the application of megasonics in the olive oil process on laboratory and pilot scale levels. Sound pressure level and cavitational yield distribution were characterised with hydrophones and luminol to determine associated physical and sonochemical effects inside the reactor. The effect of water addition (0%, 15%, and 30%), megasonic power levels (0%, 50%, and 100%), and malaxation time (10min, 30min, and 50min) was evaluated using response surface methodology (RSM) in a 700g batch extraction process. The RSM showed that the effect of the megasonic treatment (585kHz) in the presence of a reflector is more prominent at longer malaxation time (50min) and at higher water addition (30%) levels post-malaxation. Longer megasonic treatment of the malaxed paste (up to 15min; 220kJ/kg) increased oil extractability by up to 3.2%. When treating the malaxed paste with the same specific energy, higher oil extractability was obtained with longer treatments and low megasonic power levels in comparison to higher power levels and shorter times. Megasonic treatment of the paste before malaxation (585kHz, 10min, 146kJ/kg) and no water addition provided an increase in oil extractability of up to 3.8% with respect to the non-sonicated control. A double sonication intervention, before and after malaxation, using low (40kHz) and high (585kHz) frequency, respectively, provided up to 2.4% increase in oil extractability. A megasonic intervention post-malaxation (400 and 600kHz, 57-67min, 18-21kJ/kg) on a pilot scale using early-harvest olive fruits resulted in up to 1.7% extra oil extractability. Oil extracted under a high sonication frequency (free radical production regime) did not impact on olive oil quality parameters at reactor characterisation levels. Megasonic standing wave forces can enhance olive oil separation at various stages of the olive oil extraction process.

2.
Ultrason Sonochem ; 26: 56-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25637292

RESUMO

This work validated, in a higher frequency range, the theoretical predictions made by Boyle around 1930, which state that the optimal transmission of sound pressure through a metal plate occurs when the plate thickness equals a multiple of half the wavelength of the sound wave. Several reactor design parameters influencing the transmission of high frequency ultrasonic waves through a stainless steel plate were examined. The transmission properties of steel plates of various thicknesses (1-7 mm) were studied for frequencies ranging from 400 kHz to 2 MHz and at different distances between plates and transducers. It was shown that transmission of sound pressure through a steel plate showed high dependence of the thickness of the plate to the frequency of the sound wave (thickness ratio). Maximum sound pressure transmission of ∼ 60% of the incident pressure was observed when the ratio of the plate thickness to the applied frequency was a multiple of a half wavelength (2 MHz, 6mm stainless steel plate). In contrast, minimal sound pressure transmission (∼ 10-20%) was measured for thickness ratios that were not a multiple of a half wavelength. Furthermore, the attenuation of the sound pressure in the transmission region was also investigated. As expected, it was confirmed that higher frequencies have more pronounced sound pressure attenuation than lower frequencies. The spatial distribution of the sound pressure transmitted through the plate characterized by sonochemiluminescence measurements using luminol emission, supports the validity of the pressure measurements in this study.

3.
Ultrason Sonochem ; 27: 22-29, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26186816

RESUMO

The performance of an ultrasound reactor chamber relies on the sound pressure level achieved throughout the system. The active volume of a high frequency ultrasound chamber can be determined by the sound pressure penetration and distribution provided by the transducers. This work evaluated the sound pressure levels and uniformity achieved in water by selected commercial scale high frequency plate transducers without and with reflector plates. Sound pressure produced by ultrasonic plate transducers vertically operating at frequencies of 400 kHz (120 W) and 2 MHz (128 W) was characterized with hydrophones in a 2 m long chamber and their effective operating distance across the chamber's vertical cross section was determined. The 2 MHz transducer produced the highest pressure amplitude near the transducer surface, with a sharp decline of approximately 40% of the sound pressure occurring in the range between 55 and 155 mm from the transducer. The placement of a reflector plate 500 mm from the surface of the transducer was shown to improve the sound pressure uniformity of 2 MHz ultrasound. Ultrasound at 400 kHz was found to penetrate the fluid up to 2 m without significant losses. Furthermore, 400 kHz ultrasound generated a more uniform sound pressure distribution regardless of the presence or absence of a reflector plate. The choice of the transducer distance to the opposite reactor wall therefore depends on the transducer plate frequency selected. Based on pressure measurements in water, large scale 400 kHz reactor designs can consider larger transducer distance to opposite wall and larger active cross-section, and therefore can reach higher volumes than when using 2 MHz transducer plates.

4.
Ultrason Sonochem ; 21(6): 2122-30, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24815104

RESUMO

The formation of metallic particulates from erosion was investigated by running a series of transducers at various frequencies in water. Two low frequency transducer sonotrodes were run for 7.5h at 18kHz and 20kHz. Three high frequency plates operating at megasonic frequencies of 0.4MHz, 1MHz, and 2MHz were run over a 7days period. Electrical conductivity and pH of the solution were measured before and after each run. A portion of the non-sonicated and treated water was partially evaporated to achieve an 80-fold concentration of particles and then sieved through nano-filters of 0.1µm, 0.05µm, and 0.01µm. An aliquot of the evaporated liquid was also completely dried on strips of carbon tape to determine the presence of finer particles post sieving. An aliquot was analyzed for detection of 11 trace elements by Inductively Coupled Plasma Mass Spectroscopy (ICPMS). The filters and carbon tapes were analyzed by FE-SEM imaging to track the presence of metals by EDS (Energy Dispersive Spectroscopy) and measure the particle size and approximate composition of individual particles detected. Light microscopy visualization was used to calculate the area occupied by the particles present in each filter and high resolution photography was used for visualization of sonotrode surfaces. The roughness of all transducers before and after sonication was tested through profilometry. No evidence of formation of nano-particles was found at any tested frequency. High amounts of metallic micron-sized particles at 18kHz and 20kHz formed within a day, while after 7day runs only a few metallic micro particles were detected above 0.4MHz. Erosion was corroborated by an increase in roughness in the 20kHz tip after ultrasound. The elemental analysis showed that metal leach occurred but values remained below accepted drinking water limits, even after excessively long exposure to ultrasound. With the proviso that the particles measured here were only characterized in two dimensions and could be nanoparticulate in terms of the third dimension, this research suggests that there are no serious health implications resulting from the formation of nanoparticles under the evaluation conditions. Therefore, high frequency transducer plates can be safely operated in direct contact with foods. However, due to significant production of metallic micro-particulates, redesign of lower frequency sonotrodes and reaction chambers is advised to enable operation in various food processing direct-contact applications.


Assuntos
Manipulação de Alimentos/instrumentação , Inocuidade dos Alimentos , Metais/química , Sonicação/instrumentação , Transdutores , Metais/toxicidade , Água/química
5.
Ultrason Sonochem ; 20(1): 52-62, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22929928

RESUMO

Recent research has shown that high frequency ultrasound (0.4-3 MHz), can enhance milkfat separation in small scale systems able to treat only a few milliliters of sample. In this work, the effect of ultrasonic standing waves on milkfat creaming was studied in a 6L reactor and the influence of different frequencies and transducer configurations in direct contact with the fluid was investigated. A recombined coarse milk emulsion with fat globules stained with oil-red-O dye was selected for the separation trials. Runs were performed with one or two transducers placed in vertical (parallel or perpendicular) and horizontal positions (at the reactor base) at 0.4, 1 and/or 2 MHz (specific energy 8.5 ± 0.6 kJ/kg per transducer). Creaming behavior was assessed by measuring the thickness of the separated cream layer. Other methods supporting this assessment included the measurement of fat content, backscattering, particle size distribution, and microscopy of samples taken at the bottom and top of the reactor. Most efficient creaming was found after treatment at 0.4 MHz in single and double vertical transducer configurations. Among these configurations, a higher separation rate was obtained when sonicating at 0.4 MHz in a vertical perpendicular double transducer setup. The horizontal transducer configuration promoted creaming at 2 MHz only. Fat globule size increase was observed when creaming occurred. This research highlights the potential for enhanced separation of milkfat in larger scale systems from selected transducer configurations in contact with a dairy emulsion, or emulsion splitting in general.


Assuntos
Manipulação de Alimentos/instrumentação , Leite/química , Transdutores , Ultrassom/instrumentação , Animais , Emulsões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA