Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2300011, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452434

RESUMO

Patients undergoing gynecological procedures suffer from lasting side effects due to intraoperative nerve damage. Small, delicate nerves with complex and nonuniform branching patterns in the female pelvic neuroanatomy make nerve-sparing efforts during standard gynecological procedures such as hysterectomy, cystectomy, and colorectal cancer resection difficult, and thus many patients are left with incontinence and sexual dysfunction. Herein, a near-infrared (NIR) fluorescent nerve-specific contrast agent, LGW08-35, that is spectrally compatible with clinical fluorescence guided surgery (FGS) systems is formulated and characterized for rapid implementation for nerve-sparing gynecologic surgeries. The toxicology, pharmacokinetics (PK), and pharmacodynamics (PD) of micelle formulated LGW08-35 are examined, enabling the determination of the optimal imaging doses and time points, blood and tissue uptake parameters, and maximum tolerated dose (MTD). Application of the formulated fluorophore to imaging of female rat and swine pelvic neuroanatomy validates the continued clinical translation and use for real-time identification of important nerves such as the femoral, sciatic, lumbar, iliac, and hypogastric nerves. Further development of LGW08-35 for clinical use will unlock a valuable tool for surgeons in direct visualization of important nerves and contribute to the ongoing characterization of the female pelvic neuroanatomy to eliminate the debilitating side effects of nerve damage during gynecological procedures.

2.
Nat Chem ; 15(5): 729-739, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36997700

RESUMO

Non-destructive fluorophore diffusion across cell membranes to provide an unbiased fluorescence intensity readout is critical for quantitative imaging applications in live cells and tissues. Commercially available small-molecule fluorophores have been engineered for biological compatibility, imparting high water solubility by modifying rhodamine and cyanine dye scaffolds with multiple sulfonate groups. The resulting net negative charge, however, often renders these fluorophores cell-membrane-impermeant. Here we report the design and development of our biologically compatible, water-soluble and cell-membrane-permeable fluorophores, termed OregonFluor (ORFluor). By adapting previously established ratiometric imaging methodology using bio-affinity agents, it is now possible to use small-molecule ORFluor-labelled therapeutic inhibitors to quantitatively visualize their intracellular distribution and protein target-specific binding, providing a chemical toolkit for quantifying drug target availability in live cells and tissues.


Assuntos
Corantes Fluorescentes , Água , Corantes Fluorescentes/química , Rodaminas/química
4.
J Biomed Opt ; 30(Suppl 1): S13707, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39473456

RESUMO

Significance: Head and neck squamous cell carcinoma (HNSCC) has the sixth highest incidence worldwide, with > 650,000 cases annually. Surgery is the primary treatment option for HNSCC, during which surgeons balance two main goals: (1) complete cancer resection and (2) preservation of normal tissues to ensure post-surgical quality of life. Unfortunately, these goals are not synergistic, where complete cancer resection is often limited by efforts to preserve normal tissues, particularly nerves, and reduce life-altering comorbidities. Aim: Currently, no clinically validated technology exists to enhance intraoperative cancer and nerve recognition. Fluorescence-guided surgery (FGS) has successfully integrated into clinical medicine, providing surgeons with real-time visualization of important tissues and complex anatomy, where FGS imaging systems operate almost exclusively in the near-infrared (NIR, 650 to 900 nm). Notably, this spectral range permits the detection of two NIR imaging channels for spectrally distinct detection. Approach: Herein, we evaluated the utility of spectrally distinct NIR nerve- and tumor-specific fluorophores for two-color FGS to guide HNSCC surgery. Using a human HNSCC xenograft murine model, we demonstrated that facial nerves and tumors could be readily differentiated using these nerve- and tumor-specific NIR fluorophores. Results: The selected nerve-specific fluorophore showed no significant difference in nerve specificity and off-target tissue fluorescence in the presence of xenograft head and neck tumors. Co-administration of two NIR fluorophores demonstrated successful tissue-specific labeling of nerves and tumors in spectrally distinct NIR imaging channels. Conclusions: We demonstrate a comprehensive FGS tool for cancer resection and nerve sparing during HNSCC procedures for future clinical translation.


Assuntos
Neoplasias de Cabeça e Pescoço , Imagem Óptica , Cirurgia Assistida por Computador , Cirurgia Assistida por Computador/métodos , Animais , Camundongos , Neoplasias de Cabeça e Pescoço/cirurgia , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Imagem Óptica/métodos , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Carcinoma de Células Escamosas de Cabeça e Pescoço/cirurgia , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA