Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Cancer ; 153(5): 1003-1015, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37338006

RESUMO

High-grade gliomas are aggressive, deadly primary brain tumors. Median survival of patients with glioblastoma (GBM, WHO grade 4) is 14 months and <10% of patients survive 2 years. Despite improved surgical strategies and forceful radiotherapy and chemotherapy, the prognosis of GBM patients is poor and did not improve over decades. We performed targeted next-generation sequencing with a custom panel of 664 cancer- and epigenetics-related genes, and searched for somatic and germline variants in 180 gliomas of different WHO grades. Herein, we focus on 135 GBM IDH-wild type samples. In parallel, mRNA sequencing was accomplished to detect transcriptomic abnormalities. We present the genomic alterations in high-grade gliomas and the associated transcriptomic patterns. Computational analyses and biochemical assays showed the influence of TOP2A variants on enzyme activities. In 4/135 IDH-wild type GBMs we found a novel, recurrent mutation in the TOP2A gene encoding topoisomerase 2A (allele frequency [AF] = 0.03, 4/135 samples). Biochemical assays with recombinant, wild type (WT) and variant proteins demonstrated stronger DNA binding and relaxation activity of the variant protein. GBM patients carrying the altered TOP2A had shorter overall survival (median OS 150 vs 500 days, P = .0018). In the GBMs with the TOP2A variant we found transcriptomic alterations consistent with splicing dysregulation. luA novel, recurrent TOP2A mutation, which was found exclusively in four GBMs, results in the TOP2A E948Q variant with altered DNA binding and relaxation activities. The deleterious TOP2A mutation resulting in transcription deregulation in GBMs may contribute to disease pathology.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/metabolismo , Glioma/genética , Prognóstico , DNA , Isocitrato Desidrogenase/genética , Mutação
2.
Int J Cancer ; 142(11): 2363-2374, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29313975

RESUMO

Glioblastomas (GBMs) are high-grade brain tumors, differentially driven by alterations (amplification, deletion or missense mutations) in the epidermal growth factor receptor (EGFR), that carry a poor prognosis of just 12-15 months following standard therapy. A combination of interventions targeting tumor-specific cell surface regulators along with convergent downstream signaling pathways may enhance treatment efficacy. Against this background, we investigated a novel photoimmunotherapy approach combining the cytotoxicity of photodynamic therapy with the specificity of immunotherapy. An EGFR-specific affibody (ZEGFR:03115 ) was conjugated to the phthalocyanine dye, IR700DX, which when excited with near-infrared light produces a cytotoxic response. ZEGFR:03115 -IR700DX EGFR-specific binding was confirmed by flow cytometry and confocal microscopy. The conjugate showed effective targeting of EGFR positive GBM cells in the brain. The therapeutic potential of the conjugate was assessed both in vitro, in GBM cell lines and spheroids by the CellTiter-Glo® assay, and in vivo using subcutaneous U87-MGvIII xenografts. In addition, mice were imaged pre- and post-PIT using the IVIS/Spectrum/CT to monitor treatment response. Binding of the conjugate correlated to the level of EGFR expression in GBM cell lines. The cell proliferation assay revealed a receptor-dependent response between the tested cell lines. Inhibition of EGFRvIII+ve tumor growth was observed following administration of the immunoconjugate and irradiation. Importantly, this response was not seen in control tumors. In conclusion, the ZEGFR:03115 -IR700DX showed specific uptake in vitro and enabled imaging of EGFR expression in the orthotopic brain tumor model. Moreover, the proof-of-concept in vivo PIT study demonstrated therapeutic efficacy of the conjugate in subcutaneous glioma xenografts.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Imunoconjugados/farmacologia , Imunoterapia , Fototerapia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Imunoterapia/métodos , Camundongos , Imagem Molecular , Fototerapia/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancers (Basel) ; 16(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38254732

RESUMO

Kinins are a set of peptides present in tissues that are involved in the inflammatory response and cancer progression. However, studies showing the expression of kinin receptors in human glioma samples are still incomplete and contradictory. The aim of the present study was to ascertain the expression of BDKRB1 and BDKRB2 genes, as well as the level of B1R and B2R proteins in human gliomas, depending on the degree of malignancy. Additionally, representative kinin-dependent genes with altered expression were indicated. The expression profile of kinin-dependent genes was determined using oligonucleotide microarray technique. In addition, RT-qPCR was used to assess the expression level of selected differentiating genes. The location of kinin receptors in brain gliomas was assessed using immunohistochemical methods. The oligonucleotide microarray method was used to identify 12 mRNA IDs of kinin-related genes whose expression was upregulated or downregulated in gliomas of different grades. In immunohistochemically stained samples, the concentrations of BR1 and BR2 proteins, measured by optical density, were statistically significantly higher in grade G3 vs. G2 and G4 vs. G3. Increased expression of kinin receptors BDKRB1 and BDKRB2 in brain gliomas, depending on the degree of malignancy, suggests the involvement of kinins and their receptors in the disease's pathogenesis. Quantitative assessment of mRNA BDKRB1, PRKAR1A, MAP2K, and EGFR in patients with brain tumors may hold diagnostic and therapeutic significance.

4.
Cancers (Basel) ; 15(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37370741

RESUMO

There is no established method to assess the PD-L1 expression in brain tumours. Therefore, we investigated the suitability of affibody molecule (ZPD-L1) radiolabelled with F-18 (Al18F) and Ga-68 to measure the expression of PD-L1 in xenograft mouse models of GBM. Mice bearing subcutaneous and orthotopic tumours were imaged 1 h post-radioconjugate administration. Ex vivo biodistribution studies and immunohistochemistry (IHC) staining were performed. Tumoural PD-L1 expression and CD4+/CD8+ tumour-infiltrating lymphocytes were evaluated in human GBM specimens. ZPD-L1 was radiolabelled with radiochemical yields of 32.2 ± 4.4% (F-18) and 73.3 ± 1.8% (Ga-68). The cell-associated radioactivity in vitro was consistent with PD-L1 expression levels assessed with flow cytometry. In vivo imaging demonstrated that 18F-AlF-NOTA-ZPD-L1 can distinguish between PD-L1 high-expressing tumours (U87-MGvIII) and PD-L1-negative ones (H292PD-L1Ko). The radioconjugate was quickly cleared from the blood and normal tissues, allowing for high-contrast images of brain tumours as early as 1 h post-injection. 68Ga-NOTA-ZPD-L1 showed heterogeneous and diffuse accumulation that corresponded to the extensively infiltrating GCGR-E55 tumours involving contiguous lobes of the brain. Lastly, 39% of analysed GBM patient samples showed PD-L1+ staining of tumour cells that was associated with elevated levels of CD4+ and CD8+ lymphocytes. Our results suggest that the investigated radioconjugates are very promising agents with the potential to facilitate the future design of treatment regimens for GBM patients.

5.
Cancers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36230775

RESUMO

Despite numerous efforts aiming to characterise glioblastoma pathology (GBM) and discover new therapeutic strategies, GBM remains one of the most challenging tumours to treat. Here we propose the optimisation of in vitro culturing of GBM patient-derived cells, namely the establishment of GBM-derived cultures and their maintenance at oxygen tension mimicking oxygenation conditions occurring within the tumour. To globally analyse cell states, we performed the transcriptome analysis of GBM patient-derived cells kept as spheroids in serum-free conditions at the reduced oxygen tension (5% O2), cells cultured at atmospheric oxygen (20% O2), and parental tumour. Immune cells present in the tumour were depleted, resulting in the decreased expression of the immune system and inflammation-related genes. The expression of genes promoting cell proliferation and DNA repair was higher in GBM cell cultures when compared to the relevant tumour sample. However, lowering oxygen tension to 5% did not affect the proliferation rate and expression of cell cycle and DNA repair genes in GBM cell cultures. Culturing GBM cells at 5% oxygen was sufficient to increase the expression of specific stemness markers, particularly the PROM1 gene, without affecting neural cell differentiation markers. GBM spheroids cultured at 5% oxygen expressed higher levels of hypoxia-inducible genes, including those encoding glycolytic enzymes and pro-angiogenic factors. The genes up-regulated in cells cultured at 5% oxygen had higher expression in parental GBMs compared to that observed in 20% cell cultures, suggesting the preservation of the hypoxic component of GBM transcriptome at 5% oxygen and its loss in standard culture conditions. Evaluation of expression of those genes in The Cancer Genome Atlas dataset comprising samples of normal brain tissue, lower-grade gliomas and GBMs indicated the expression pattern of the indicated genes was specific for GBM. Moreover, GBM cells cultured at 5% oxygen were more resistant to temozolomide, the chemotherapeutic used in GBM therapy. The presented comparison of GBM cultures maintained at high and low oxygen tension together with analysis of tumour transcriptome indicates that lowering oxygen tension during cell culture may more allegedly reproduce tumour cell behaviour within GBM than standard culture conditions (e.g., atmospheric oxygen tension). Low oxygen culture conditions should be considered as a more appropriate model for further studies on glioblastoma pathology and therapy.

6.
Cancers (Basel) ; 12(10)2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050631

RESUMO

Anti-tumour therapies eliminate proliferating tumour cells by induction of DNA damage, but genomic aberrations or transcriptional deregulation may limit responses to therapy. Glioblastoma (GBM) is a malignant brain tumour, which recurs inevitably due to chemo- and radio-resistance. Human RecQ helicases participate in DNA repair, responses to DNA damage and replication stress. We explored if a helicase RECQL4 contributes to gliomagenesis and responses to chemotherapy. We found upregulated RECQL4 expression in GBMs associated with poor survival of GBM patients. Increased levels of nuclear and cytosolic RECQL4 proteins were detected in GBMs on tissue arrays and in six glioma cell lines. RECQL4 was detected both in cytoplasm and mitochondria by Western blotting and immunofluorescence. RECQL4 depletion in glioma cells with siRNAs and CRISPR/Cas9 did not affect basal cell viability, slightly impaired DNA replication, but induced profound transcriptomic changes and increased chemosensitivity of glioma cells. Sphere cultures originated from RECQL4-depleted cells had reduced sphere forming capacity, stronger responded to temozolomide upregulating cell cycle inhibitors and pro-apoptotic proteins. RECQL4 deficiency affected mitochondrial network and reduced mitochondrial membrane polarization in LN18 glioblastoma cells. We demonstrate that targeting RECQL4 overexpressed in glioblastoma could be a new strategy to sensitize glioma cells to chemotherapeutics.

7.
Adv Med Sci ; 65(1): 149-155, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31945659

RESUMO

PURPOSE: Severe postoperative pain (SPP) may occur after lumbar discectomy. To prevent SPP and reduce rescue opioid consumption, infiltration anaesthesia (IA) has been combined with general anaesthesia (GA). This study verified how GA combined with IA facilitated intra- and postoperative demand for opioids and affected the incidence of SPP in patients subjected to open lumbar discectomy. MATERIALS/METHODS: Ninety-nine patients undergoing lumbar discectomy under GA with Surgical Pleth Index (SPI)-guided fentanyl (FNT) administration were randomly assigned to receive IA combined with either 0.2% bupivacaine (BPV) or 0.2% ropivacaine (RPV) with FNT 50 µg and compared with controls (BF, RF, and C groups, respectively). RESULTS: Ninety-four patients were included in the final analysis. Adjusted according to SPI, total intraoperative FNT dosages did not differ between the study groups (p = 0.23). The proportion of patients who reported SPP was the highest in group C (41.9%) than in the RF (12.9%) and BF groups (31.3%) (p < 0.05). Mild pain was experienced by 67.7%, 53.1% and 32.3% of patients from the RF, BF and C groups, respectively (p < 0.01). Morphine requirement was the highest in the control group (7.1 ± 5.9 mg), followed by the RF (2.7 ± 5.3 mg) and BF groups (4 ± 4.9 mg) (p < 0.05). CONCLUSIONS: IA using RPV/FNT mixture significantly reduced SPP and postoperative demand for morphine in patients subjected to lumbar discectomy under GA.


Assuntos
Analgésicos Opioides/administração & dosagem , Anestesia Geral/métodos , Anestesia Local/métodos , Bupivacaína/administração & dosagem , Discotomia/efeitos adversos , Vértebras Lombares/cirurgia , Dor Pós-Operatória/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Vértebras Lombares/patologia , Masculino , Pessoa de Meia-Idade , Dor Pós-Operatória/etiologia , Prognóstico , Estudos Prospectivos , Adulto Jovem
8.
Biomed Res Int ; 2017: 8013575, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28316990

RESUMO

Glioblastoma (GBM) is a primary neuroepithelial tumor of the central nervous system, characterized by an extremely aggressive clinical phenotype. Patients with GBM have a poor prognosis and only 3-5% of them survive for more than 5 years. The current GBM treatment standards include maximal resection followed by radiotherapy with concomitant and adjuvant therapies. Despite these aggressive therapeutic regimens, the majority of patients suffer recurrence due to molecular heterogeneity of GBM. Consequently, a number of potential diagnostic, prognostic, and predictive biomarkers have been investigated. Some of them, such as IDH mutations, 1p19q deletion, MGMT promoter methylation, and EGFRvIII amplification are frequently tested in routine clinical practice. With the development of sequencing technology, detailed characterization of GBM molecular signatures has facilitated a more personalized therapeutic approach and contributed to the development of a new generation of anti-GBM therapies such as molecular inhibitors targeting growth factor receptors, vaccines, antibody-based drug conjugates, and more recently inhibitors blocking the immune checkpoints. In this article, we review the exciting progress towards elucidating the potential of current and novel GBM biomarkers and discuss their implications for clinical practice.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Glioblastoma/diagnóstico , Glioblastoma/terapia , Adulto , Neoplasias Encefálicas/genética , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Receptores ErbB/genética , Feminino , Deleção de Genes , Glioblastoma/genética , Humanos , Sistema Imunitário , Isocitrato Desidrogenase/genética , Masculino , Oncologia/métodos , Oncologia/tendências , Pessoa de Meia-Idade , Mutação , Recidiva Local de Neoplasia/tratamento farmacológico , Fenótipo , Prognóstico , Regiões Promotoras Genéticas , Transdução de Sinais , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA