Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vet Res ; 55(1): 7, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225645

RESUMO

Carbonyl-reducing enzymes (CREs) catalyse the reduction of carbonyl groups in many eobiotic and xenobiotic compounds in all organisms, including helminths. Previous studies have shown the important roles of CREs in the deactivation of several anthelmintic drugs (e.g., flubendazole and mebendazole) in adults infected with the parasitic nematode Haemonchus contortus, in which the activity of a CRE is increased in drug-resistant strains. The aim of the present study was to compare the abilities of nematodes of both a drug-susceptible strain (ISE) and a drug-resistant strain (IRE) to reduce the carbonyl group of flubendazole (FLU) in different developmental stages (eggs, L1/2 larvae, L3 larvae, and adults). In addition, the effects of selected CRE inhibitors (e.g., glycyrrhetinic acid, naringenin, silybin, luteolin, glyceraldehyde, and menadione) on the reduction of FLU were evaluated in vitro and ex vivo in H. contortus adults. The results showed that FLU was reduced by H. contortus in all developmental stages, with adult IRE females being the most metabolically active. Larvae (L1/2 and L3) and adult females of the IRE strain reduced FLU more effectively than those of the ISE strain. Data from the in vitro inhibition study (performed with cytosolic-like fractions of H. contortus adult homogenate) revealed that glycyrrhetinic acid, naringenin, mebendazole and menadione are effective inhibitors of FLU reduction. Ex vivo study data showed that menadione inhibited FLU reduction and also decreased the viability of H. contortus adults to a similar extent. Naringenin and mebendazole were not toxic at the concentrations tested, but they did not inhibit the reduction of FLU in adult worms ex vivo.


Assuntos
Anti-Helmínticos , Ácido Glicirretínico , Haemonchus , Feminino , Animais , Mebendazol/farmacologia , Mebendazol/uso terapêutico , Vitamina K 3/farmacologia , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Larva , Ácido Glicirretínico/farmacologia
2.
Nucleic Acids Res ; 50(18): 10212-10229, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36156152

RESUMO

The short oligodeoxynucleotide (ODN) probes are suitable for good discrimination of point mutations. However, the probes suffer from low melting temperatures. In this work, the strategy of using acridine-4-carboxamide intercalators to improve thermal stabilisation is investigated. The study of large series of acridines revealed that optimal stabilisation is achieved upon decoration of acridine by secondary carboxamide carrying sterically not demanding basic function bound through a two-carbon linker. Two highly active intercalators were attached to short probes (13 or 18 bases; designed as a part of HFE gene) by click chemistry into positions 7 and/or 13 and proved to increase the melting temperate (Tm) of the duplex by almost 8°C for the best combination. The acridines interact with both single- and double-stranded DNAs with substantially preferred interaction for the latter. The study of interaction suggested higher affinity of the acridines toward the GC- than AT-rich sequences. Good discrimination of two point mutations was shown in practical application with HFE gene (wild type, H63D C > G and S65C A > C mutations). Acridine itself can also serve as a fluorophore and also allows discrimination of the fully matched sequences from those with point mutations in probes labelled only with acridine.


Assuntos
Acridinas , Substâncias Intercalantes , Carbono , DNA/genética , DNA/metabolismo , Oligodesoxirribonucleotídeos
3.
Vet Res ; 54(1): 59, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443113

RESUMO

Most drugs used in the treatment of helminthiasis in humans and animals have lost their efficacy due to the development of drug-resistance in helminths. Moreover, since anthelmintics, like many pharmaceuticals, are now recognized as hazardous contaminants of the environment, returning to medicinal plants and their products represents an environmentally friendly way to treat helminthiasis. The goal of the present study was to test the anthelminthic activity of methanol extracts of eight selected European ferns from the genera Dryopteris, Athyrium and Blechnum against the nematode Haemonchus contortus, a widespread parasite of small ruminants. Eggs and adults of H. contortus drug-susceptible strain ISE and drug-resistant strain WR were isolated from experimentally infected sheep. The efficacy of fern extracts was assayed using egg hatch test and adults viability test based on ATP-level measurement. Among the ferns tested, only Dryopteris aemula extract (0.2 mg/mL) inhibited eggs hatching by 25% in comparison to control. Athyrium distentifolium, Dryopteris aemula and Dryopteris cambrensis were effective against H. contortus adults. In concentration 0.1 mg/mL, A. distentifolium, D. aemula, D. cambrensis significantly decreased the viability of females from ISE and WR strains to 36.2%, 51.9%, 32.9% and to 35.3%, 27.0%, 23.3%, respectively in comparison to untreated controls. None of the extracts exhibited toxicity in precise cut slices from ovine liver. Polyphenol's analysis identified quercetin, kaempferol, luteolin, 3-hydroxybenzoic acid, caffeic acid, coumaric acid and protocatechuic acid as the major components of these anthelmintically active ferns.


Assuntos
Anti-Helmínticos , Gleiquênias , Haemonchus , Helmintíase , Doenças dos Ovinos , Drogas Veterinárias , Humanos , Ovinos , Animais , Extratos Vegetais/farmacologia , Drogas Veterinárias/farmacologia , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Larva , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/parasitologia
4.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206260

RESUMO

Although manure is an important source of minerals and organic compounds it represents a certain risk of spreading the veterinary drugs in the farmland and their permeation to human food. We tested the uptake of the anthelmintic drug fenbendazole (FBZ) by soybean, a common crop plant, from the soil and its biotransformation and accumulation in different soybean organs, including beans. Soybeans were cultivated in vitro or grown in a greenhouse in pots. FBZ was extensively metabolized in roots of in vitro seedlings, where sixteen metabolites were identified, and less in leaves, where only two metabolites were found. The soybeans in greenhouse absorbed FBZ by roots and translocated it to the leaves, pods, and beans. In roots, leaves, and pods two metabolites were identified. In beans, FBZ and one metabolite was found. FBZ exposure did not affect the plant fitness or yield, but reduced activities of some antioxidant enzymes and isoflavonoids content in the beans. In conclusion, manure or biosolids containing FBZ and its metabolites represent a significant risk of these pharmaceuticals entering food consumed by humans or animal feed. In addition, the presence of these drugs in plants can affect plant metabolism, including the production of isoflavonoids.


Assuntos
Fenbendazol/metabolismo , Glycine max/metabolismo , Transporte Biológico , Biotransformação , Fenbendazol/farmacocinética
5.
Vet Res ; 51(1): 94, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703268

RESUMO

The efficacy of anthelmintic therapy of farm animals rapidly decreases due to drug resistance development in helminths. In resistant isolates, the increased expression and activity of drug-metabolizing enzymes (DMEs), e.g. cytochromes P450 (CYPs), UDP-glycosyltransferases (UGTs) and P-glycoprotein transporters (P-gps), in comparison to sensitive isolates have been described. However, the mechanisms and circumstances of DMEs induction are not well known. Therefore, the present study was designed to find the changes in expression of CYPs, UGTs and P-gps in adult parasitic nematodes Haemonchus contortus exposed to sub-lethal doses of the benzimidazole anthelmintic drug albendazole (ABZ) and its active metabolite ABZ-sulfoxide (ABZSO). In addition, the effect of ABZ at sub-lethal doses on the ability to deactivate ABZ during consequent treatment was studied. The results showed that contact of H. contortus adults with sub-lethal doses of ABZ and ABZSO led to a significant induction of several DMEs, particularly cyp-2, cyp-3, cyp-6, cyp-7, cyp-8, UGT10B1, UGT24C1, UGT26A2, UGT365A1, UGT366C1, UGT368B2, UGT367A1, UGT371A1, UGT372A1 and pgp-3, pgp-9.1, pgp-9.2, pgp-10. This induction led to increased formation of ABZ metabolites (especially glycosides) and their increased export from the helminths' body into the medium. The present study demonstrates for the first time that contact of H. contortus with sub-lethal doses of ABZ (e.g. during underdose treatment) improves the ability of H. contortus adults to deactivate ABZ in consequent therapy.


Assuntos
Albendazol/análogos & derivados , Albendazol/farmacologia , Antinematódeos/farmacologia , Resistência a Medicamentos , Haemonchus/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Haemonchus/enzimologia , Inativação Metabólica
6.
Int J Mol Sci ; 21(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824876

RESUMO

Albendazole (ABZ), a widely used anthelmintic drug, enters the environment mainly via livestock excrements. To evaluate the environmental impact of ABZ, the knowledge of its uptake, effects and metabolism in all non-target organisms, including plants, is essential. The present study was designed to identify the metabolic pathway of ABZ and to test potential ABZ phytotoxicity in fodder plant alfalfa, with seeds and in vitro regenerants used for these purposes. Alfalfa was chosen, as it may meet manure from ABZ-treated animals in pastures and fields. Alfalfa is often used as a feed of livestock, which might already be infected with helminths. The obtained results showed that ABZ did not inhibit alfalfa seed germination and germ growth, but evoked stress and a toxic effect in alfalfa regenerants. Alfalfa regenerants were able to uptake ABZ and transform it into 21 metabolites. UHPLC-MS/MS analysis revealed three new ABZ metabolites that have not been described yet. The discovery of the parent compound ABZ together with the anthelmintically active and instable metabolites in alfalfa leaves shows that the contact of fodder plants with ABZ-containing manure might represent not only a danger for herbivorous invertebrates, but also may cause the development of ABZ resistance in helminths.


Assuntos
Albendazol/farmacologia , Anti-Helmínticos/farmacologia , Medicago sativa/efeitos dos fármacos , Metaboloma , Ração Animal , Germinação , Medicago sativa/crescimento & desenvolvimento , Medicago sativa/metabolismo
7.
Molecules ; 25(16)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796616

RESUMO

In recent years interest has grown in the occurrence and the effects of pharmaceuticals in the environment. The aim of this work is to evaluate the risk of fertilizing crops with manure from livestock treated with anthelmintics. The present study was designed to follow the fate of the commonly used anthelmintic drug, ivermectin (IVM) and its metabolites in soybeans (Glycine max (L.) Merr.), a plant that is grown and consumed world-wide for its high content of nutritional and health-beneficial substances. In vitro plantlets and soybean plants, cultivated in a greenhouse, were used for this purpose. Our results showed the uptake of IVM and its translocation to the leaves, but not in the pods and the beans. Four IVM metabolites were detected in the roots, and one in the leaves. IVM exposure decreased slightly the number and weight of the beans and induced changes in the activities of antioxidant enzymes. In addition, the presence of IVM affected the proportion of individual isoflavones and reduced the content of isoflavones aglycones, which might decrease the therapeutic value of soybeans. Fertilization of soybean fields with manure from IVM-treated animals appears to be safe for humans, due to the absence of IVM in beans, the food part of plants. On the other hand, it could negatively affect soybean plants and herbivorous invertebrates.


Assuntos
Antioxidantes/metabolismo , Glycine max/metabolismo , Isoflavonas/metabolismo , Ivermectina/farmacologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Sementes/metabolismo , Antiparasitários/farmacologia , Transporte Biológico , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento
8.
Ecotoxicol Environ Saf ; 147: 681-687, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28934712

RESUMO

Although veterinary anthelmintics represent an important source of environmental pollution, the fate of anthelmintics and their effects in plants has not yet been studied sufficiently. The aim of our work was to identify metabolic pathways of the two benzimidazole anthelmintics fenbendazole (FBZ) and flubendazole (FLU) in the ribwort plantain (Plantago lanceolata L.). Plants cultivated as in vitro regenerants were used for this purpose. The effects of anthelmintics and their biotransformation products on plant oxidative stress parameters were also studied. The obtained results showed that the enzymatic system of the ribwort plantain was able to uptake FLU and FBZ, translocate them in leaves and transform them into several metabolites, particularly glycosides. Overall, 12 FLU and 22 FBZ metabolites were identified in the root, leaf base and leaf top of the plant. Concerning the effects of FLU and FBZ, both anthelmintics in the ribwort plantain cells caused significant increase of proline concentration (up to twice), a well-known stress marker, and significant decrease of superoxide dismutase activity (by 50%). In addition, the activities of four other antioxidant enzymes were significantly changed after either FLU or FBZ exposition. This could indicate a certain risk of oxidative damage in plants influenced by anthelmintics, particularly when they are under other stress conditions.


Assuntos
Anti-Helmínticos/toxicidade , Fenbendazol/toxicidade , Mebendazol/análogos & derivados , Plantago/efeitos dos fármacos , Drogas Veterinárias/toxicidade , Animais , Anti-Helmínticos/metabolismo , Biotransformação , Fenbendazol/metabolismo , Mebendazol/metabolismo , Mebendazol/toxicidade , Redes e Vias Metabólicas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plantago/enzimologia , Plantago/crescimento & desenvolvimento , Drogas Veterinárias/metabolismo
9.
Ecotoxicol Environ Saf ; 141: 37-42, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28301809

RESUMO

Albendazole (ABZ) is a benzimidazole anthelmintic widely used especially in veterinary medicine. Along with other drugs, anthelmintics have become one of a new class of micro-pollutants that disturb the environment but the information about their fate in plants remains limited. The present study was designed to test the uptake and biotransformation of ABZ in the ribwort plantain (Plantago lancelota), a common meadow plant, which can come into contact with this anthelmintic through the excrements of treated animals in pastures. Two model systems were used and compared: cell suspensions and whole plant regenerants. In addition, time-dependent changes in occurrence of ABZ and its metabolites in roots, basal parts of the leaves and tops of the leaves were followed up. Ultrahigh-performance liquid chromatography coupled with high mass accuracy tandem mass spectrometry (UHPLC-MS/MS) led to the identification of 18 metabolites of ABZ formed in the ribwort. In both model systems, the same types of ABZ biotransformation reactions were found, but the spectrum and abundance of the ABZ metabolites detected in cell suspensions and regenerants differed significantly. Cell suspensions seem to be suitable only for qualitative estimations of drug biotransformation reactions while regenerants were shown to represent an adequate model for the qualitative as well as quantitative evaluation of drug uptake and metabolism in plants.


Assuntos
Albendazol/análise , Anti-Helmínticos/análise , Plantago/metabolismo , Poluentes do Solo/análise , Albendazol/metabolismo , Animais , Anti-Helmínticos/metabolismo , Biodegradação Ambiental , Biotransformação , Cromatografia Líquida , Plantago/crescimento & desenvolvimento , Poluentes do Solo/metabolismo , Espectrometria de Massas em Tandem
10.
Arch Pharm (Weinheim) ; 350(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28635184

RESUMO

A series of benzaldehyde and salicylaldehyde-S-benzylisothiosemicarbazones was synthesized and tested against 12 different strains of mycobacteria, Gram-positive and Gram-negative bacteria, and the significant selectivity toward mycobacteria was proved. Twenty-eight derivatives were evaluated for the inhibition of isocitrate lyase, which is a key enzyme of the glyoxylate cycle necessary for latent tuberculosis infection, and their iron-chelating properties were investigated. Two derivatives, 5-bromosalicylaldehyde-S-(4-fluorobenzyl)-isothiosemicarbazone and salicylaldehyde-S-(4-bromobenzyl)-isothiosemicarbazone, influenced the isocitrate lyase activity and caused a better inhibition at 10 µmol/L than 3-nitropropionic acid, a standard inhibitor. The compounds were also found to act as exogenous chelators of iron, which is an obligate cofactor for many mycobacterial enzymes. Due to their low cytotoxicity, together with the activity against isocitrate lyase and the ability to sequester iron ions, the compounds belong to potential antibiotics with the main effect on mycobacteria.


Assuntos
Antibacterianos/farmacologia , Antituberculosos/farmacologia , Mycobacterium/efeitos dos fármacos , Tiossemicarbazonas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antituberculosos/síntese química , Antituberculosos/química , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Isocitrato Liase/antagonistas & inibidores , Relação Estrutura-Atividade , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química
11.
Molecules ; 22(11)2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144397

RESUMO

Sulforaphane (SFN), an isothiocyanate found in cruciferous vegetables, exerts many beneficial effects on human health such as antioxidant, anti-inflammatory, and anticancer effects. The effect of SFN alone on drug-metabolizing enzymes (DMEs) has been investigated in numerous in vitro and in vivo models, but little is known about the effect of SFN in combination with cytochrome P450 (CYP) inducer. The aim of our study was to evaluate the effect of SFN on the activity and gene expression of selected DMEs in primary cultures of rat hepatocytes treated or non-treated with ß-naphthoflavone (BNF), the model CYP1A inducer. In our study, SFN alone did not significantly alter the activity and expression of the studied DMEs, except for the glutathione S-transferase (GSTA1) mRNA level, which was significantly enhanced. Co-treatment of hepatocytes with SFN and BNF led to a substantial increase in sulfotransferase, aldoketoreductase 1C, carbonylreductase 1 and NAD(P)H:quinone oxidoreductase 1 activity and a marked decrease in cytochrome P450 (CYP) Cyp1a1, Cyp2b and Cyp3a4 expression in comparison to the treatment with BNF alone. Sulforaphane is able to modulate the activity and/or expression of DMEs, thus shifting the balance of carcinogen metabolism toward deactivation, which could represent an important mechanism of its chemopreventive activity.


Assuntos
Hepatócitos/efeitos dos fármacos , Isotiocianatos/farmacologia , beta-Naftoflavona/farmacologia , Animais , Hepatócitos/enzimologia , Inativação Metabólica , Masculino , RNA Mensageiro/metabolismo , Ratos Wistar , Sulfóxidos
12.
Molecules ; 22(4)2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338641

RESUMO

Sesquiterpenes, 15-carbon compounds formed from three isoprenoid units, are the main components of plant essential oils. Sesquiterpenes occur in human food, but they are principally taken as components of many folk medicines and dietary supplements. The aim of our study was to test and compare the potential inhibitory effect of acyclic sesquiterpenes, trans-nerolidol, cis-nerolidol and farnesol, on the activities of the main xenobiotic-metabolizing enzymes in rat and human liver in vitro. Rat and human subcellular fractions, relatively specific substrates, corresponding coenzymes and HPLC, spectrophotometric or spectrofluorometric analysis of product formation were used. The results showed significant inhibition of cytochromes P450 (namely CYP1A, CYP2B and CYP3A subfamilies) activities by all tested sesquiterpenes in rat as well as in human hepatic microsomes. On the other hand, all tested sesquiterpenes did not significantly affect the activities of carbonyl-reducing enzymes and conjugation enzymes. The results indicate that acyclic sesquiterpenes might affect CYP1A, CYP2B and CYP3A mediated metabolism of concurrently administered drugs and other xenobiotics. The possible drug-sesquiterpene interactions should be verified in in vivo experiments.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Farneseno Álcool/farmacologia , Fígado/enzimologia , Sesquiterpenos/farmacologia , Xenobióticos/metabolismo , Animais , Inibidores das Enzimas do Citocromo P-450/química , Farneseno Álcool/química , Humanos , Concentração Inibidora 50 , Cinética , Ratos , Sesquiterpenos/química , Frações Subcelulares/enzimologia
13.
Eur J Nutr ; 55(1): 361-71, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25663641

RESUMO

PURPOSE: Consumption of dietary supplements with green tea extract (GTE) is popular for weight management, but it may be accompanied by various side effects, including interactions with drugs. The aim of the present in vivo study was to evaluate the effect of defined GTE (Polyphenon 60) in three dosage schemes on insulin, leptin and drug-metabolizing enzymes in obese mice. METHODS: Experimental obesity was induced by repeated s.c. application of monosodium glutamate to newborn mice. Green tea extract was administered in three dosage schemes in chow diet. The plasmatic levels of insulin and leptin were assayed using enzyme-linked immunosorbent assay. Enzyme activities and mRNA expressions of drug-metabolizing enzymes (totally 13) were analyzed in liver and small intestine using spectrophotometric and HPLC assays and RT-PCR, respectively. RESULTS: GTE-treatment decreased insulin and leptin levels. Eleven enzymes were significantly affected by GTE-treatment. Long-term administration of 0.01% GTE caused increase in the activity and mRNA level of cytochrome P450 3A4 (CYP3A4) ortholog in the liver as well as in the small intestine. Interestingly, short-term overdose by GTE (0.1%) had more pronounced effects on enzyme activities and mRNA expressions than long-term overdose. CONCLUSIONS: GTE-mediated induction of CYP3A4 ortholog, the main drug-metabolizing enzyme, could result in decreased efficacy of simultaneously or subsequently administered drug in obese individuals.


Assuntos
Suplementos Nutricionais , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Chá/química , Animais , Antioxidantes/farmacologia , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Família 2 do Citocromo P450 , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Insulina/sangue , Leptina/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Obesos , Obesidade/induzido quimicamente , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Glutamato de Sódio/efeitos adversos
14.
Xenobiotica ; 46(2): 132-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26153440

RESUMO

1. Giant liver fluke Fascioloides magna is a dangerous parasite, which infects herbivores. It was imported to Europe from North America and started to spread. Benzimidazoles like albendazole, mebendazole, triclabendazole and salicylanilides closantel and rafoxanide are the most used anthelmintics to control fascioloidosis. However their effect might be altered via drug-metabolizing enzymes of this parasite. 2. The aim of our study was to determine the activities of drug-metabolizing enzymes in F. magna and the metabolism of above mentioned anthelmintics. 3. Activities of several oxidative, reductive and conjugative enzymes towards various model xenobiotic substrates were found in F. magna subcellular fractions. 4. Subcellular fractions from F. magna oxidized albendazole to its sulphoxide metabolite and reduced mebendazole to hydroxyl-mebendazole. Under ex vivo conditions, only very-low concentrations of these compounds were detected using high-performance liquid chromatography/mass spectrometry. 5. The results indicate that the giant liver fluke possesses the active xenobiotic-metabolizing system. The overexpression of this system may play an important role in parasite resistance against these anthelmintics.


Assuntos
Benzimidazóis/metabolismo , Fasciola hepatica/enzimologia , Xenobióticos/metabolismo , Albendazol/metabolismo , Animais , Anti-Helmínticos/metabolismo , Cromatografia Líquida de Alta Pressão , Fasciola hepatica/efeitos dos fármacos , Mebendazol/metabolismo , Rafoxanida/metabolismo , Salicilanilidas/metabolismo , Sulfóxidos/metabolismo , Triclabendazol
15.
Molecules ; 21(9)2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27617982

RESUMO

The knowledge of processes in intestinal cells is essential, as most xenobiotics come into contact with the small intestine first. Caco-2 cells are human colorectal adenocarcinoma that once differentiated, exhibit enterocyte-like characteristics. Our study compares activities and expressions of important conjugation enzymes and their modulation by green tea extract (GTE) and epigallocatechin gallate (EGCG) using both proliferating (P) and differentiated (D) caco-2 cells. The mRNA levels of the main conjugation enzymes were significantly elevated after the differentiation of Caco-2 cells. However, no increase in conjugation enzymes' activities in differentiated cells was detected in comparison to proliferating ones. GTE/EGCG treatment did not affect the mRNA levels of any of the conjugation enzymes tested in either type of cells. Concerning conjugation enzymes activities, GTE/EGCG treatment elevated glutathione S-transferase (GST) activity by approx. 30% and inhibited catechol-O-methyltransferase (COMT) activity by approx. 20% in differentiated cells. On the other hand, GTE as well as EGCG treatment did not significantly affect the activities of conjugation enzymes in proliferating cells. Administration of GTE/EGCG mediated only mild changes of GST and COMT activities in enterocyte-like cells, indicating a low risk of GTE/EGCG interactions with concomitantly administered drugs. However, a considerable chemo-protective effect of GTE via the pronounced induction of detoxifying enzymes cannot be expected as well.


Assuntos
Catequina/análogos & derivados , Catecol O-Metiltransferase/biossíntese , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutationa Transferase/biossíntese , Células CACO-2 , Catequina/química , Catequina/farmacologia , Humanos , RNA Mensageiro/biossíntese , Chá/química
16.
Drug Metab Dispos ; 43(2): 258-65, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25473020

RESUMO

The prevalence of obesity is rapidly increasing across the world. Physiologic alterations associated with obesity are known to alter enzyme expression and/or activities. As drug-metabolizing and antioxidant enzymes serve as defense system against potentially toxic compounds, their modulation might have serious consequences. In this work, we studied selected antioxidant and drug-metabolizing enzymes (DME) in monosodium glutamate-mouse model of obesity. Specific activities, protein, and mRNA expressions of these enzymes in liver as well as in small intestine were compared in obese male mice and in their lean counterparts. Furthermore, expression of the NF-E2-related factor 2 (Nrf2) and its relation to obesity were tested. Obtained results showed that obesity affects expression and/or activities of some DME and antioxidant enzymes. In obese mice, upregulation of UDP-glucuronosyltransferases 1A (UGT1A), NAD(P)H:quinone oxidoreductase 1 (NQO1), nuclear transcription factor Nrf2, and downregulation of some isoforms of glutathione S-transferases (GST) were observed. Most of these changes were tissue and/or isoform specific. NQO1 seems to be regulated transcriptionally via Nrf2, but other enzymes might be regulated post-transcriptionally and/or post-translationally. Enhanced expression of Nrf2 in livers of obese mice is expected to play a role in protective adaptation. In contrast, elevated activities of NQO1 and UGT1A may cause alterations in drug pharmacokinetics in obese individuals. Moreover, decreased capacity of GST in obese animals indicates potentially reduced antioxidant defense and weaker chemoprotection.


Assuntos
Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Mucosa Intestinal/enzimologia , Intestino Delgado/enzimologia , Fígado/enzimologia , Obesidade/enzimologia , Animais , Animais Recém-Nascidos , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade/metabolismo , Especificidade de Órgãos , RNA Mensageiro/metabolismo , Glutamato de Sódio
17.
Parasitology ; 142(5): 648-59, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25373326

RESUMO

The sheep tapeworm Moniezia expansa is very common parasite, which affects ruminants such as sheep, goats as well as other species. The benzimidazole anthelmintics albendazole (ABZ), flubendazole (FLU) and mebendazole (MBZ) are often used to treat the infection. The drug-metabolizing enzymes of helminths may alter the potency of anthelmintic treatment. The aim of our study was to assess the activity of the main drug-metabolizing enzymes and evaluate the metabolism of selected anthelmintics (ABZ, MBZ and FLU) in M. expansa. Activities of biotransformation enzymes were determined in subcellular fractions. Metabolites of the anthelmintics were detected and identified using high performance liquid chromatography/ultra-violet/VIS/fluorescence or ultra-high performance liquid chromatography/mass spectrometry. Reduction of MBZ, FLU and oxidation of ABZ were proved as well as activities of various metabolizing enzymes. Despite the fact that the conjugation enzymes glutathione S-transferase, UDP-glucuronosyl transferase and UDP-glucosyl transferase were active in vitro, no conjugated metabolites of anthelmintics were identified either ex vivo or in vitro. The obtained results indicate that sheep tapeworm is able to deactivate the administered anthelmintics, and thus protects itself against their action.


Assuntos
Albendazol/farmacocinética , Anti-Helmínticos/farmacocinética , Cestoides/enzimologia , Mebendazol/análogos & derivados , Mebendazol/farmacocinética , Albendazol/farmacologia , Oxirredutases do Álcool/metabolismo , Animais , Anti-Helmínticos/farmacologia , Biotransformação , Catalase/metabolismo , Cestoides/efeitos dos fármacos , Cestoides/ultraestrutura , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/metabolismo , Glutationa Transferase/metabolismo , Intestino Delgado/parasitologia , Isoenzimas/metabolismo , Mebendazol/farmacologia , Oxigenases de Função Mista/metabolismo , Moniezíase/parasitologia , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Oxirredução , Peroxidase/metabolismo , Ovinos , Doenças dos Ovinos/parasitologia , Superóxido Dismutase/metabolismo
18.
Molecules ; 20(8): 15343-58, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26307963

RESUMO

The sesquiterpenes ß-caryophyllene, ß-caryophyllene oxide (CAO), α-humulene (HUM), trans-nerolidol (NER), and valencene (VAL) are substantial components of the essential oil from Myrica rubra leaves which has exhibited significant antiproliferative effects in several intestinal cancer cell lines, with CaCo-2 cells being the most sensitive. The present study was designed to evaluate the effects of these sesquiterpenes on the efficacy and toxicity of the anticancer drug doxorubicin (DOX) in CaCo-2 cancer cells and in primary culture of rat hepatocytes. Our results showed that HUM, NER, VAL and CAO inhibited proliferation of CaCo-2 cancer cells but they did not affect the viability of hepatocytes. CAO, NER and VAL synergistically potentiated the efficacy of DOX in cancer cells killing. All sesquiterpenes exhibited the ability to selectively increase DOX accumulation in cancer cells and did not affect DOX concentration in hepatocytes. Additionally, CAO and VAL were able to increase the pro-oxidative effect of DOX in CaCo-2 cells. Moreover, CAO mildly ameliorated DOX toxicity in hepatocytes. Based on all results, CAO seems to be the most promising compound for further testing.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Hepatócitos/efeitos dos fármacos , Myrica/química , Oxirredução/efeitos dos fármacos , Sesquiterpenos/farmacologia , Animais , Células CACO-2 , Linhagem Celular Tumoral , Doxorrubicina/toxicidade , Humanos , Cultura Primária de Células , Ratos
19.
Infect Immun ; 82(12): 5035-48, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25245806

RESUMO

Francisella tularensis is a highly infectious bacterium that causes the potentially lethal disease tularemia. This extremely virulent bacterium is able to replicate in the cytosolic compartments of infected macrophages. To invade macrophages and to cope with their intracellular environment, Francisella requires multiple virulence factors, which are still being identified. Proteins containing tetratricopeptide repeat (TPR)-like domains seem to be promising targets to investigate, since these proteins have been reported to be directly involved in virulence-associated functions of bacterial pathogens. Here, we studied the role of the FTS_0201, FTS_0778, and FTS_1680 genes, which encode putative TPR-like proteins in Francisella tularensis subsp. holarctica FSC200. Mutants defective in protein expression were prepared by TargeTron insertion mutagenesis. We found that the locus FTS_1680 and its ortholog FTT_0166c in the highly virulent Francisella tularensis type A strain SchuS4 are required for proper intracellular replication, full virulence in mice, and heat stress tolerance. Additionally, the FTS_1680-encoded protein was identified as a membrane-associated protein required for full cytopathogenicity in macrophages. Our study thus identifies FTS_1680/FTT_0166c as a new virulence factor in Francisella tularensis.


Assuntos
Proteínas de Bactérias/metabolismo , Francisella tularensis/fisiologia , Loci Gênicos , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Citosol/microbiologia , Modelos Animais de Doenças , Feminino , Francisella tularensis/genética , Francisella tularensis/crescimento & desenvolvimento , Técnicas de Inativação de Genes , Macrófagos/microbiologia , Camundongos Endogâmicos BALB C , Mutagênese Insercional , Tularemia/microbiologia , Tularemia/patologia , Virulência , Fatores de Virulência/genética
20.
Molecules ; 19(9): 14948-60, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25237750

RESUMO

The use of dietary supplements containing cranberry extract is a common way to prevent urinary tract infections. As consumption of these supplements containing a mixture of concentrated anthocyanins and proanthocyanidins has increased, interest in their possible interactions with drug-metabolizing enzymes has grown. In this in vivo study, rats were treated with a standardized cranberry extract (CystiCran®) obtained from Vaccinium macrocarpon in two dosage schemes (14 days, 0.5 mg of proanthocyanidins/kg/day; 1 day, 1.5 mg of proanthocyanidins/kg/day). The aim of this study was to evaluate the effect of anthocyanins and proanthocyanidins contained in this extract on the activity and expression of intestinal and hepatic biotransformation enzymes: cytochrome P450 (CYP1A1, CYP1A2, CYP2B and CYP3A), carbonyl reductase 1 (CBR1), glutathione-S-transferase (GST) and UDP-glucuronosyl transferase (UGT). Administration of cranberry extract led to moderate increases in the activities of hepatic CYP3A (by 34%), CYP1A1 (by 38%), UGT (by 40%), CBR1 (by 17%) and GST (by 13%), while activities of these enzymes in the small intestine were unchanged. No changes in the relative amounts of these proteins were found. Taken together, the interactions of cranberry extract with simultaneously administered drugs seem not to be serious.


Assuntos
Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Vaccinium macrocarpon/química , Animais , Biotransformação , Intestinos/enzimologia , Fígado/enzimologia , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA