Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511344

RESUMO

Colorectal cancer (CRC) has a high incidence and is one of the leading causes of cancer-related death. The accumulation of cancer-associated fibroblasts (CAF) induces an aggressive, stem-like phenotype in tumor cells, and it indicates a poor prognosis. However, cellular heterogeneity among CAFs and the targeting of both stromal and CRC cells are not yet well resolved. Here, we identified CD142high fibroblasts with a higher stimulating effect on CRC cell proliferation via secreting more hepatocyte growth factor (HGF) compared to CD142low CAFs. We also found that combinations of inhibitors that had either a promising effect in other cancer types or are more active in CRC compared to normal colonic epithelium acted synergistically in CRC cells. Importantly, heat shock protein 90 (HSP90) inhibitor selected against CD142high fibroblasts, and both CRC cells and CAFs were sensitive to a BCL-xL inhibitor. However, targeting mitogen-activated protein kinase kinase (MEK) was ineffective in fibroblasts, and an epigenetic inhibitor selected for a tumor cell population with markers of aggressive behavior. Thus, we suggest BCL-xL and HSP90 inhibitors to eliminate cancer cells and decrease the tumor-promoting CD142high CAF population. This may be the basis of a strategy to target both CRC cells and stromal fibroblasts, resulting in the inhibition of tumor relapse.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Humanos , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Fibroblastos/metabolismo , Recidiva Local de Neoplasia/patologia , Microambiente Tumoral , Tromboplastina
2.
Stem Cells ; 38(2): 291-300, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31675158

RESUMO

Extracellular vesicles (EV) are membrane-surrounded vesicles that represent a novel way of intercellular communication by carrying biologically important molecules in a concentrated and protected form. The intestinal epithelium is continuously renewed by a small proliferating intestinal stem cell (ISC) population, residing at the bottom of the intestinal crypts in a specific microenvironment, the stem cell niche. By using 3D mouse and human intestinal organoids, we show that intestinal fibroblast-derived EVs are involved in forming the ISC niche by transmitting Wnt and epidermal growth factor (EGF) activity. With a mouse model that expresses EGFP in the Lgr5+ ISCs, we prove that loss in ISC number in the absence of EGF is prevented by fibroblast-derived EVs. Furthermore, we demonstrate that intestinal fibroblast-derived EVs carry EGF family members, such as amphiregulin. Mechanistically, blocking EV-bound amphiregulin inhibited the EV-induced survival of organoids. In contrast, EVs have no role in transporting R-Spondin, a critical niche factor amplifying Wnt signaling. Collectively, we prove the important role of fibroblast-derived EVs as a novel transmission mechanism of factors in the normal ISC niche.


Assuntos
Vesículas Extracelulares/metabolismo , Mucosa Intestinal/fisiopatologia , Intestinos/fisiopatologia , Nicho de Células-Tronco/genética , Idoso , Humanos , Masculino , Pessoa de Meia-Idade
3.
Cell Mol Life Sci ; 76(12): 2463-2476, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31028424

RESUMO

Extracellular vesicles (EVs) are membrane-surrounded structures that transmit biologically important molecules from the releasing to target cells, thus providing a novel intercellular communication mechanism. Since EVs carry their cargo in a protected form and their secretion is generally increased in tumorigenesis, EVs hold a great potential for early cancer diagnosis. By 3D culturing, we provide evidence that colorectal cancer (CRC) patient-derived organoids, representing a state-of-the-art established and essential approach for studying human CRC, is a suitable model for EV analysis. When testing the effects of major factors promoting CRC progression on EV release in the organoid model, we observed that Apc mutation, leading to uncontrolled Wnt activation and thus to tumorigenesis in the vast majority in CRC patients, critically induces EV release by activating the Wnt pathway. Furthermore, the extracellular matrix component collagen, known to accumulate in tumorigenesis, enhances EV secretion as well. Importantly, we show that fibroblast-derived EVs induce colony formation of CRC organoid cells under hypoxia. In contrast, there was no major effect of tumor cell-derived EVs on the activation of fibroblasts. Collectively, our results with CRC and Apc-mutant adenoma organoids identify Apc mutation and collagen deposition as critical factors for increasing EV release from tumors. Furthermore, we provide evidence that stromal fibroblast-derived EVs contribute to tumorigenesis under unfavorable conditions in CRC.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/patologia , Vesículas Extracelulares/patologia , Intestinos/patologia , Organoides/patologia , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Progressão da Doença , Vesículas Extracelulares/genética , Humanos , Camundongos Endogâmicos C57BL , Mutação , Organoides/metabolismo , Células Tumorais Cultivadas , Via de Sinalização Wnt
4.
Biochem Biophys Res Commun ; 499(1): 37-43, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29550476

RESUMO

AIMS: The prognosis of patients with pancreatic cancer has remained virtually unchanged with a high mortality rate compared to other types of cancers. An earlier detection would provide a time window of opportunity for treatment and prevention of deaths. In the present study we investigated extracellular vesicle (EV)-associated potential biomarkers for pancreatic cancer by directly assessing EV size-based subpopulations in pancreatic juice samples of patients with chronic pancreatitis or pancreatic cancer. In addition, we also studied blood plasma and pancreatic cancer cell line-derived EVs. METHODS: Comparative proteomic analysis was performed of 102 EV preparations from human pancreatic juices, blood, and pancreatic cancer cell lines Capan-1 and MIA PaCa-2. EV preparations were also characterized by electron microscopy, tunable resistive pulse sensing, and flow cytometry. RESULTS: Here we describe the presence of EVs in human pancreatic juice samples. Pancreatic juice EV-associated proteins that we identified as possible candidate markers for pancreatic cancer included mucins, such as MUC1, MUC4, MUC5AC, MUC6 and MUC16, CFTR, and MDR1 proteins. These candidate biomarkers could also be detected by flow cytometry in EVs found in pancreatic juice and those secreted by pancreatic cancer cell lines. CONCLUSIONS: Together our data show that detection and characterization of EVs directly in pancreatic juice is feasible and may prove to be a valuable source of potential biomarkers of pancreatic cancer.


Assuntos
Adenocarcinoma/diagnóstico , Biomarcadores Tumorais/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Vesículas Extracelulares/química , Mucinas/genética , Neoplasias Pancreáticas/diagnóstico , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Diagnóstico Diferencial , Vesículas Extracelulares/metabolismo , Expressão Gênica , Humanos , Mucinas/metabolismo , Pâncreas , Suco Pancreático/química , Suco Pancreático/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Pancreatite Crônica/diagnóstico , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Prognóstico , Proteoma/genética , Proteoma/metabolismo , Proteômica
5.
Front Cell Dev Biol ; 8: 558, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32775326

RESUMO

Extracellular vesicles (EV), structures surrounded by a biological membrane, transport biologically active molecules, and represent a recently identified way of intercellular communication. Colorectal cancer (CRC), one of the most common cancer types in the Western countries, is composed of both tumor and stromal cells and the amount of stromal fibroblasts negatively correlates with patient survival. Here we show that normal colon fibroblasts (NCF) release EVs with a characteristic miRNA cargo profile when stimulated with TGFß, one of the most important activating factors of fibroblasts, without a significant increase in the amount of secreted EVs. Importantly, fibroblast-derived EVs induce cell proliferation in epidermal growth factor (EGF)-dependent patient-derived organoids, one of the best current systems to model the intra-tumoral heterogeneity of human cancers. In contrast, fibroblast-derived EVs have no effect in 3D models where EGF is dispensible. This EV-induced cell proliferation did not depend on whether NCFs or cancer-associated fibroblasts were studied or on the pre-activation by TGFß, suggesting that TGFß-induced sorting of specific miRNAs into EVs does not play a major role in enhancing CRC proliferation. Mechanistically, we provide evidence that amphiregulin, transported by EVs, is a major factor in inducing CRC cell proliferation. We found that neutralization of EV-bound amphiregulin blocked the effects of the fibroblast-derived EVs. Collectively, our data suggest a novel mechanism for fibroblast-induced CRC cell proliferation, coupled to EV-associated amphiregulin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA